Volume 39 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Yu Liang, Haibo Bi, Yunhe Wang, Zehua Zhang, Haijun Huang. Role of atmospheric factors in forcing Arctic sea ice variability[J]. Acta Oceanologica Sinica, 2020, 39(9): 60-72. doi: 10.1007/s13131-020-1629-6
Citation: Yu Liang, Haibo Bi, Yunhe Wang, Zehua Zhang, Haijun Huang. Role of atmospheric factors in forcing Arctic sea ice variability[J]. Acta Oceanologica Sinica, 2020, 39(9): 60-72. doi: 10.1007/s13131-020-1629-6

Role of atmospheric factors in forcing Arctic sea ice variability

doi: 10.1007/s13131-020-1629-6
Funds:  The National Natural Science Foundation of China under contract Nos 41406215 and 41706194; a fund provided by the Qingdao National Laboratory for Marine Science and Technology; the National Natural Science Foundation of China (NSFC)-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606401.
More Information
  • Corresponding author: E-mail: bhb@qdio.ac.cnhjhuang@qdio.ac.cn
  • Received Date: 2019-06-28
  • Accepted Date: 2019-09-27
  • Available Online: 2020-12-28
  • Publish Date: 2020-09-25
  • The spatial structure of the Arctic sea ice concentration (SIC) variability and the connection to atmospheric as well as radiative forcing during winter and summer for the 1979–2017 period are investigated. The interannual variability with different spatial characteristics of SIC in summer and winter is extracted using the empirical orthogonal function (EOF) analysis. The present study confirms that the atmospheric circulation has a strong influence on the SIC through both dynamic and thermodynamic processes, as the heat flux anomalies in summer are radiatively forced while those in winter contain both radiative and “circulation-induced” components. Thus, atmospheric fluctuations have an explicit and extensive influence to the SIC through complex mechanisms during both seasons. Moreover, analysis of a variety of atmospheric variables indicates that the primary mechanism about specific regional SIC patterns in Arctic marginal seas are different with special characteristics.
  • loading
  • [1]
    Årthun M, Eldevik T, Smedsrud L H, et al. 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate, 25(13): 4736–4743. doi: 10.1175/JCLI-D-11-00466.1
    [2]
    Bamber J L, Tedstone A J, King M D, et al. 2018. Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. Journal of Geophysical Research: Oceans, 123(3): 1827–1837. doi: 10.1002/2017JC013605
    [3]
    Bi Haibo, Sun Ke, Zhou Xuan, et al. 2016. Arctic Sea ice area export through the fram strait estimated from satellite-based data: 1988–2012. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7): 3144–3157. doi: 10.1109/JSTARS.2016.2584539
    [4]
    Boisvert L N, Petty A A, Stroeve J C. 2016. The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Monthly Weather Review, 144(11): 4279–4287. doi: 10.1175/MWR-D-16-0234.1
    [5]
    Comiso J C. 2006. Abrupt decline in the Arctic winter sea ice cover. Geophysical Research Letters, 33(18): L18504
    [6]
    Comiso J C. 2017. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. [1979–2017]. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, doi: https://doi.org/10.5067/7Q8HCCWS4I0R.[2018.04.03]
    [7]
    Comiso J C, Hall D K. 2014. Climate trends in the Arctic as observed from space. Wiley Interdisciplinary Reviews: Climate Change, 5(3): 389–409. doi: 10.1002/wcc.277
    [8]
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic Sea ice cover. Geophysical Research Letters, 35(1): L01703
    [9]
    Crasemann B, Handorf D, Jaiser R, et al. 2017. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?. Polar Science, 14: 9–20. doi: 10.1016/j.polar.2017.09.002
    [10]
    Curry J A, Schramm J L, Serreze M C, et al. 1995. Water vapor feedback over the Arctic Ocean. Journal of Geophysical Research: Atmospheres, 100(D7): 14223–14229. doi: 10.1029/95JD00824
    [11]
    Deser C, Teng Haiyan. 2008. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophysical Research Letters, 35(2): L02504
    [12]
    Deser C, Walsh J E, Timlin M S. 2000. Arctic sea ice variability in the context of recent atmospheric circulation trends. Journal of Climate, 13(3): 617–633. doi: 10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2
    [13]
    Ding Qinghua, Schweiger A J B, L’heureux M L, et al. 2016. Influence of the recent high-latitude atmospheric circulation change on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295
    [14]
    Eisen O, Kottmeier C. 2000. On the importance of leads in sea ice to the energy balance and ice formation in the Weddell Sea. Journal of Geophysical Research: Oceans, 105(C6): 14045–14060. doi: 10.1029/2000JC900050
    [15]
    Fan Tingting, Huang Fei, Su Jie. 2012. The seasonal March of dominate mode of the mid-high latitude atmosphere circulation in northern hemisphere and the associated Arctic sea ice. Periodical of Ocean University of China (in Chinese), 42(7): 19–25
    [16]
    Fang Zhifang, Wallace J M. 1994. Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. Journal of Climate, 7(12): 1897–1914. doi: 10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2
    [17]
    Germe A, Houssais M N, Herbaut C. 2011. Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. Journal of Geophysical Research: Oceans, 116(C10): C10034. doi: 10.1029/2011JC006960
    [18]
    Hall A. 2004. The role of surface albedo feedback in climate. Journal of Climate, 17(7): 1550–1568. doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
    [19]
    Hegyi B M, Taylor P C. 2017. The regional influence of the Arctic Oscillation and Arctic Dipole on the wintertime Arctic surface radiation budget and sea ice growth. Geophysical Research Letters, 44(9): 4341–4350. doi: 10.1002/2017GL073281
    [20]
    Hegyi B M, Taylor P C. 2018. The unprecedented 2016–2017 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes. Geophysical Research Letters, 45(10): 5204–5212. doi: 10.1029/2017GL076717
    [21]
    Herbaut C, Houssais M N, Close S, et al. 2015. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers, 106: 97–115. doi: 10.1016/j.dsr.2015.10.005
    [22]
    Hinzman L D, Bettez N D, Bolton W R, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other Arctic Regions. Climatic Change, 72(3): 251–298. doi: 10.1007/s10584-005-5352-2
    [23]
    Johannessen O M, Bengtsson L, Miles M W, et al. 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A, 56(4): 328–341. doi: 10.3402/tellusa.v56i4.14418
    [24]
    King M P, Hell M, Keenlyside N. 2016. Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the northern Hemisphere. Climate Dynamics, 46(3–4): 1185–1195
    [25]
    Kwok R. 2009. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. Journal of Climate, 22(9): 2438–2457. doi: 10.1175/2008JCLI2819.1
    [26]
    Lee S, Gong Tingting, Feldstein S B, et al. 2017. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophysical Research Letters, 44(20): 10654–10661. doi: 10.1002/2017GL075375
    [27]
    Lei Ruibo, Gui Dawei, Hutchings J K, et al. 2019. Backward and forward drift trajectories of sea ice in the northwestern Arctic Ocean in response to changing atmospheric circulation. International Journal of Climatology, 39(11): 4372–4391. doi: 10.1002/joc.6080
    [28]
    Letterly A, Key J, Liu Yinghui. 2016. The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. Journal of Geophysical Research: Atmospheres, 121(5): 2178–2187. doi: 10.1002/2015JD024316
    [29]
    Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(9): 269–283
    [30]
    Liu Yinghui, Key J R. 2014. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environmental Research Letters, 9(4): 044002. doi: 10.1088/1748-9326/9/4/044002
    [31]
    Liu Zheng, Schweiger A. 2017. Synoptic conditions, clouds, and sea ice melt onset in the Beaufort and Chukchi seasonal ice zone. Journal of Climate, 30(17): 6999–7016. doi: 10.1175/JCLI-D-16-0887.1
    [32]
    Lynch A H, Serreze M C, Cassano E N, et al. 2016. Linkages between Arctic summer circulation regimes and regional sea ice anomalies. Journal of Geophysical Research: Atmospheres, 121(13): 7868–7880. doi: 10.1002/2016JD025164
    [33]
    Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
    [34]
    Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
    [35]
    Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502
    [36]
    Nakanowatari T, Inoue J, Sato K, et al. 2015. Summertime atmosphere–ocean preconditionings for the Bering Sea ice retreat and the following severe winters in North America. Environmental Research Letters, 10(9): 094023. doi: 10.1088/1748-9326/10/9/094023
    [37]
    Nghiem S V, Rigor I G, Perovich D K, et al. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34(19): L19504. doi: 10.1029/2007GL031138
    [38]
    Ogi M, Rigor I G, McPhee M G, et al. 2008. Summer retreat of Arctic sea ice: role of summer winds. Geophysical Research Letters, 35(24): L24701. doi: 10.1029/2008GL035672
    [39]
    Ogi M, Rysgaard S, Barber D G. 2016. Importance of combined winter and summer Arctic Oscillation (AO) on September sea ice extent. Environmental Research Letters, 11(3): 034019. doi: 10.1088/1748-9326/11/3/034019
    [40]
    Ogi M, Wallace J M. 2007. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophysical Research Letters, 34(12): L12705. doi: 10.1029/2007GL029897
    [41]
    Ogi M, Yamazaki K, Wallace J M. 2010. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophysical Research Letters, 37(7): L07701
    [42]
    Olonscheck D, Mauritsen T, Notz D. 2019. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nature Geoscience, 12(6): 430–434. doi: 10.1038/s41561-019-0363-1
    [43]
    Overland J E, Wang M Y. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1): 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
    [44]
    Park H S, Lee S, Son S W, et al. 2015. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. Journal of Climate, 28(13): 5030–5040. doi: 10.1175/JCLI-D-15-0074.1
    [45]
    Partington K, Flynn T, Lamb D, et al. 2003. Late twentieth century northern Hemisphere sea-ice record from U. S. National Ice Center ice charts. Journal of Geophysical Research: Oceans, 108(C11): 3343
    [46]
    Persson P O G. 2012. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Climate Dynamics, 39(6): 1349–1371. doi: 10.1007/s00382-011-1196-9
    [47]
    Pleijter G. 2014. The Arctic Oscillation and its realtion to sea ice concentration [dissertation]. Delft: Delft University of Technology
    [48]
    Rigor I G, Wallace J M, Colony R L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15(18): 2648–2663. doi: 10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2
    [49]
    Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293): 1334–1337. doi: 10.1038/nature09051
    [50]
    Sedlar J, Devasthale A. 2012. Clear-sky thermodynamic and radiative anomalies over a sea ice sensitive region of the Arctic. Journal of Geophysical Research: Atmospheres, 117(D19): D19111
    [51]
    Serreze M C, Barrett A P, Stroeve J C, et al. 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3(1): 11–19. doi: 10.5194/tc-3-11-2009
    [52]
    Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77(1–2): 85–96
    [53]
    Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9): 1297–1300. doi: 10.1029/98GL00950
    [54]
    Ukita J, Honda M, Nakamura H, et al. 2007. Northern Hemisphere sea ice variability: lag structure and its implications. Tellus A: Dynamic Meteorology and Oceanography, 59(2): 261–272. doi: 10.1111/j.1600-0870.2006.00223.x
    [55]
    Wang Jia, Zhang Jinlun, Watanabe E, et al. 2009. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?. Geophysical Research Letters, 36(5): L05706
    [56]
    Wang Yunhe, Yuan Xiaojun, Bi Haibo, et al. 2019. The contributions of winter cloud anomalies in 2011 to the summer sea-ice rebound in 2012 in the Antarctic. Journal of Geophysical Research: Atmospheres, 124(6): 3435–3447. doi: 10.1029/2018JD029435
    [57]
    Wei Jianfen, Zhang Xiangdong, Wang Zhaomin. 2019. Reexamination of Fram Strait sea ice export and its role in recently accelerated Arctic sea ice retreat. Climate Dynamics, 53(3–4): 1823–1841
    [58]
    Woods C, Caballero R, Svensson G. 2013. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophysical Research Letters, 40(17): 4717–4721. doi: 10.1002/grl.50912
    [59]
    Wu Bingyi, Wang Jia, Walsh J E. 2006. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19(2): 210–225. doi: 10.1175/JCLI3619.1
    [60]
    Zhang Rong. 2015. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proceedings of the National Academy of Sciences of the United States of America, 112(15): 4570–4575. doi: 10.1073/pnas.1422296112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (500) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return