Volume 40 Issue 3
Apr.  2021
Turn off MathJax
Article Contents
Chenglong Xia, Yanpeng Zheng, Baohua Liu, Qingfeng Hua, Long Ma, Xianfeng Li, Qiuhong Xie. Tectonic implications of the subduction of the Kyushu-Palau Ridge beneath the Kyushu, southwest Japan[J]. Acta Oceanologica Sinica, 2021, 40(3): 70-83. doi: 10.1007/s13131-021-1711-8
Citation: Chenglong Xia, Yanpeng Zheng, Baohua Liu, Qingfeng Hua, Long Ma, Xianfeng Li, Qiuhong Xie. Tectonic implications of the subduction of the Kyushu-Palau Ridge beneath the Kyushu, southwest Japan[J]. Acta Oceanologica Sinica, 2021, 40(3): 70-83. doi: 10.1007/s13131-021-1711-8

Tectonic implications of the subduction of the Kyushu-Palau Ridge beneath the Kyushu, southwest Japan

doi: 10.1007/s13131-021-1711-8
Funds:  The Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606401; the Scientific and Technological Innovation Project financially supported by the Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2016ASKJ13; the Deep Sea Observation-Techniques and Equipments Development under contract No. 2016ASKJ15; the Taishan Scholar Project Funding under contract No. tspd20161007; the National Natural Science Foundation of China under contract No. 41606084; the National Programme on Global Change and Air-Sea Interaction under contract No. GASI-GEOGE-02.
More Information
  • Corresponding author: E-mail: zhengyanpeng@cug.edu.cn
  • Received Date: 2020-07-07
  • Accepted Date: 2020-07-30
  • Available Online: 2021-04-30
  • Publish Date: 2021-04-30
  • The Kyushu-Palau Ridge (KPR), a remnant arc on the Philippine Sea Plate (PSP), is subducting beneath the Kyushu, southwest Japan. Influenced by the subducting KPR, the Kyushu subduction zone corresponding to the KPR is significantly different from Shikoku subduction zone in terms of gravity anomalies, seismicity, the stress state, and the subducting slab morphology. Significant negative free-air and Bouguer gravity anomalies are observed in a prolonged area of KPR, southeast of the Miyazaki Plain, indicating that this is where KPR overlaps the overriding plate. The gravity anomaly in this area is much lower than that in other areas where the inferred KPR extends, suggesting that the subduction of the buoyant KPR may cause the lower mantle density to decrease. More earthquakes have occurred in Hyuga-nada region where the KPR subducts than in Shikoku forearc and other areas in the Kyushu forearc, indicating that the subduction of the KPR enhances the local coupling between the subducting and overriding plates. The centroid moment tensor (CMT) mechanism of earthquakes shows that stress is concentrated in the accumulated crust beneath the Kyushu forearc corresponding to the KPR, and the shallow thrusting events in the obducting plate are caused by the KPR subduction. The buoyant KPR, with a large volume of low-density sediments, was responsible for the differences of the subduction depth and dip angle of the subducting Philippine Sea (PS) slab between northern Kyushu and Shikoku. The seismic gaps and the sudden change of the dipping angle of the subducting PS slab indicate that slab tear may have occurred along the west side of the KPR beneath southwest Kyushu. A two-tear model was proposed, and the subduction of the buoyant KPR was believed to play an important role in the slab tear.
  • loading
  • [1]
    Abe Y, Ohkura T, Hirahara K, et al. 2011. Water transportation through the Philippine Sea slab subducting beneath the central Kyushu region, Japan, as derived from receiver function analyses. Geophysical Research Letters, 38(23): L23305
    [2]
    Abe Y, Ohkura T, Hirahara K, et al. 2013. Along-arc variation in water distribution in the uppermost mantle beneath Kyushu, Japan, as derived from receiver function analyses. Journal of Geophysical Research: Solid Earth, 118(7): 3540–3556. doi: 10.1002/jgrb.50257
    [3]
    Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA
    [4]
    Bautista B C, Bautista M L P, Oike K, et al. 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339(3–4): 279–310
    [5]
    Bourdon E, Eissen J P, Monzier M, et al. 2002. Adakite-like lavas from Antisana volcano (Ecuador): Evidence for slab melt metasomatism beneath Andean northern volcanic zone. Journal of Petrology, 43(2): 199–217. doi: 10.1093/petrology/43.2.199
    [6]
    Cao Lingmin, Wang Zhi, Wu Shiguo, et al. 2014. A new model of slab tear of the subducting Philippine Sea Plate associated with Kyushu-Palau Ridge subduction. Tectonophysics, 636: 158–169. doi: 10.1016/j.tecto.2014.08.012
    [7]
    Castle J C, Creager K C. 1998. Topography of the 660-km seismic discontinuity beneath Izu-Bonin: Implications for tectonic history and slab deformation. Journal of Geophysical Research: Solid Earth, 103(B6): 12511–12527. doi: 10.1029/98JB00503
    [8]
    Castle J C, Creager K C. 1999. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. Journal of Geophysical Research: Solid Earth, 104(B4): 7279–7292. doi: 10.1029/1999JB900011
    [9]
    Chen Yuxiao, Xia Xiaohong, Song Shuguang. 2012. Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen, NW China: evidence for decompression melting of oceanic slab. Chinese Science Bulletin, 57(18): 2289–2301. doi: 10.1007/s11434-012-5069-3
    [10]
    Chen Ping, Zheng Yanpeng, Liu Baohua. 2014. Geophysical features of the Nankai Trough subduction zone and their dynamic significance. Marine Geology & Quaternary Geology (in Chinese), 34(6): 153–160
    [11]
    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801–818. doi: 10.2113/gsecongeo.100.5.801
    [12]
    Cooke D R, Simmons S F. 2000. Characteristics and genesis of epithermal gold deposits. Reviews in Economic Geology, 13: 221–244
    [13]
    Cosca M, Arculus R J, Pearce J, et al. 1998. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu-Bonin-Mariana arc system. Island Arc, 7(3): 579–595. doi: 10.1111/j.1440-1738.1998.00211.x
    [14]
    Das S, Watts A B. 2009. Effect of subducting seafloor topography on the rupture characteristics of great subduction zone earthquakes. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin, Heidelberg: Springer, 103–108
    [15]
    Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662–665. doi: 10.1038/347662a0
    [16]
    Defant M J, Jackson T E, Drummond M S, et al. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. Journal of the Geological Society, 149(4): 569–579. doi: 10.1144/gsjgs.149.4.0569
    [17]
    Defant M J, Sherman S, Maury R C, et al. 2001. The geology, petrology, and petrogenesis of Saba Island, Lesser Antilles. Journal of Volcanology and Geothermal Research, 107(1–3): 87–111
    [18]
    DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1–80. doi: 10.1111/j.1365-246X.2009.04491.x
    [19]
    Deschamps A, Lallemand S. 2002. The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM 1-1–EPM 1-24. doi: 10.1029/2001JB001706
    [20]
    Dziewonski A M, Chou T A, Woodhouse J H, et al. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4): 2825–2585. doi: 10.1029/JB086iB04p02825
    [21]
    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9
    [22]
    Ely K S, Sandiford M. 2010. Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia. Tectonophysics, 483(1–2): 112–124
    [23]
    Falloon T J, Danyushevsky L V, Crawford A J, et al. 2008. Boninites and adakites from the northern termination of the Tonga trench: Implications for Adakite Petrogenesis. Journal of Petrology, 49(4): 697–715
    [24]
    Fan Jianke, Wu Shiguo, Spence G. 2015. Tomographic evidence for a slab tear induced by fossil ridge subduction at Manila Trench, South China Sea. International Geology Review, 57(5–8): 998–1013
    [25]
    Fan Jianke, Zhao Dapeng, Dong Dongdong. 2016. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications. Geochemistry, Geophysics, Geosystems, 17(2): 571–586. doi: 10.1002/2015GC006201
    [26]
    Gurnis M, Hall C, Lavier L. 2004. Evolving force balance during incipient subduction. Geochemistry, Geophysics, Geosystems, 5(7): Q07001
    [27]
    Gutscher M A, Malavieille J, Lallemand S, et al. 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 168(3–4): 255–270
    [28]
    Gutscher M A, Maury R, Eissen J P, et al. 2000. Can slab melting be caused by flat subduction?. Geology, 28(6): 535–538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
    [29]
    Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4): 353–431. doi: 10.1016/S1367-9120(01)00069-4
    [30]
    Hall R, Ali J R, Anderson C D. 1995a. Cenozoic motion of the Philippine Sea Plate: palaeomagnetic evidence from eastern Indonesia. Tectonics, 14(5): 1117–1132. doi: 10.1029/95TC01694
    [31]
    Hall R, Ali J R, Anderson C D, et al. 1995b. Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251(1–4): 229–250
    [32]
    Hall R, Fuller M, Ali J R, et al. 1995c. The Philippine Sea Plate: Magnetism and reconstructions. In: Taylor B, Natland J, eds. Active Margins and Marginal Basins of the Western Pacific. Washington, D C: American Geophysical Union, 371–403
    [33]
    Hall C E, Gurnis M, Sdrolias M, et al. 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 212(1–2): 15–30
    [34]
    Haraguchi S, Ishii T, Kimura J I, et al. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contributions to Mineralogy and Petrology, 145(2): 151–168. doi: 10.1007/s00410-002-0433-y
    [35]
    Hayes G P, Wald D J, Johnson R L. 2012. Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117(B1): B01302
    [36]
    Hedenquist J W, Matsuhisa Y, Izawa E, et al. 1994. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu District, Japan. Economic Geology, 89(1): 1–30. doi: 10.2113/gsecongeo.89.1.1
    [37]
    Huang Zhouchuan, Zhao Dapeng, Hasegawa A, et al. 2013. Aseismic deep subduction of the Philippine Sea plate and slab window. Journal of Asian Earth Sciences, 75: 82–94. doi: 10.1016/j.jseaes.2013.07.002
    [38]
    Ichikawa G. 1997. Ocean bottom seismographic experiment to study crustal structure in Hyuga-nada [dissertation]. Sapporo: University of Hokkaido (in Japanese)
    [39]
    Ishihara T, Koda K. 2007. Variation of crustal thickness in the Philippine Sea deduced from three-dimensional gravity modeling. Island Arc, 16(3): 322–337. doi: 10.1111/j.1440-1738.2007.00593.x
    [40]
    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005
    [41]
    Izawa E, Urashima Y, Ibaraki K, et al. 1990. The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. Journal of Geochemical Exploration, 36(1–3): 1–56
    [42]
    Kakubuchi S, Nagao T, Nagao K. 2000. K-Ar ages and magmatic history of the Abu Monogenetic Volcano Group, southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences (in Japanese), 29(5): 191–198. doi: 10.2465/gkk.29.191
    [43]
    Karig D E. 1972. Remnant arcs. GSA Bulletin, 83(4): 1057–1068. doi: 10.1130/0016-7606(1972)83[1057:RA]2.0.CO;2
    [44]
    Karig D E, Ingle J C Jr. 1975. Initial Reports of the Deep Sea Drilling Project. Washington, US: Government Printing Office, 191–274
    [45]
    Kelleher J, McCann W. 1976. Buoyant zones, great earthquakes, and unstable boundaries of subduction. Journal of Geophysical Research, 81(26): 4885–4896. doi: 10.1029/JB081i026p04885
    [46]
    Kepezhinskas P, Defant M J, Drummond M S. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217–1229. doi: 10.1016/0016-7037(96)00001-4
    [47]
    Kepezhinskas P, McDermott F, Defant M J, et al. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. doi: 10.1016/S0016-7037(96)00349-3
    [48]
    Kimura G. 1996. Collision orogeny at arc-arc junctions in the Japanese islands. Island Arc, 5(3): 262–275. doi: 10.1111/j.1440-1738.1996.tb00031.x
    [49]
    Kimura J I, Kunikiyo T, Osaka I, et al. 2003. Late Cenozoic volcanic activity in the Chugoku area, southwest Japan arc during back-arc basin opening and reinitiation of subduction. Island Arc, 12(1): 22–45. doi: 10.1046/j.1440-1738.2003.00377.x
    [50]
    Kodama K, Tashiro H, Takeuchi T. 1995. Quaternary counterclockwise rotation of south Kyushu, southwest Japan. Geology, 23(9): 823–826. doi: 10.1130/0091-7613(1995)023<0823:QCROSK>2.3.CO;2
    [51]
    Kong Xiangchao, Li Sanzhong, Wang Yongming, et al. 2017. Triggering causes of earthquakes along the Izu-Bonin-Mariana subduction zone. Marine Geology & Quaternary Geology (in Chinese), 37(4): 83–97
    [52]
    Kong Xiangchao, Li Sanzhong, Wang Yongming, et al. 2018. Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc. Journal of Asian Earth Sciences, 151: 90–100. doi: 10.1016/j.jseaes.2017.10.015
    [53]
    Lallemand S. 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction. Progress in Earth and Planetary Science, 3(1): 15. doi: 10.1186/s40645-016-0085-6
    [54]
    Mahony S H, Wallace L M, Miyoshi M, et al. 2011. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan. GSA Bulletin, 123(11–12): 2201–2223
    [55]
    Mason W G, Moresi L, Betts P G, et al. 2010. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 483(1–2): 71–79
    [56]
    Miller M S, Kennett B L N, Lister G S. 2004. Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc. Earth and Planetary Science Letters, 224(3–4): 363–370
    [57]
    Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23(5): 395–398. doi: 10.1130/0091-7613(1995)023<0395:SMAAEO>2.3.CO;2
    [58]
    Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915–918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
    [59]
    Nagaoka S. 1986. The landform evolution of Late Pleistocene in the Miyazaki Plain, South Kyushu, Japan. The Quaternary Research, 25(3): 139–163. doi: 10.4116/jaqua.25.139
    [60]
    Nakada M, Tahara M, Shimizu H, et al. 2002. Late Pleistocene crustal uplift and gravity anomaly in the eastern part of Kyushu, Japan, and its geophysical implications. Tectonophysics, 351(4): 263–283. doi: 10.1016/S0040-1951(02)00161-0
    [61]
    Nishimura S, Ando M, Miyazaki S. 1999. Inter-plate coupling along the Nankai Trough and southeastward motion along southern part of Kyushu. Zisin (Journal of the Seismological Society of Japan. 2nd ser.), 51(4): 443–456. doi: 10.4294/zisin1948.51.4_443
    [62]
    Nishizawa A, Kaneda K, Katagiri Y, et al. 2007. Variation in crustal structure along the Kyushu-Palau Ridge at 15–21°N on the Philippine Sea plate based on seismic refraction profiles. Earth, Planets and Space, 59(6): e17–e20. doi: 10.1186/BF03352711
    [63]
    Nishizawa A, Kaneda K, Oikawa M. 2009. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan. Earth, Planets and Space, 61(8): e37–e40. doi: 10.1186/BF03352942
    [64]
    Oda H, Ushio T. 2007. Topography of the Moho and Conrad discontinuities in the Kyushu district, Southwest Japan. Journal of Seismology, 11(2): 221–233. doi: 10.1007/s10950-007-9049-z
    [65]
    Okino K, Ohara Y, Kasuga S, et al. 1999. The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophysical Research Letters, 26(15): 2287–2290. doi: 10.1029/1999GL900537
    [66]
    Okino K, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku Basin. Journal of Geomagnetism & Geoelectricity, 46(6): 463–479
    [67]
    Oyarzun R, Márquez A, Lillo J, et al. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36(8): 794–798. doi: 10.1007/s001260100205
    [68]
    Park J O, Hori T, Kaneda Y. 2009. Seismotectonic implications of the Kyushu-Palau ridge subducting beneath the westernmost Nankai forearc. Earth, Planets and Space, 61(8): 1013–1018. doi: 10.1186/BF03352951
    [69]
    Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1–2): 227–244
    [70]
    Reagan M K, Gill J B. 1989. Coexisting calcalkaline and high-niobium basalts from turrialba volcano, Costa Rica: Implications for residual titanates in arc magma sources. Journal of Geophysical Research, 94(B4): 4619–4633. doi: 10.1029/JB094iB04p04619
    [71]
    Sadeghi H, Suzuki S, Takenaka H. 2000. Tomographic low-velocity anomalies in the uppermost mantle around the northeastern edge of Okinawa trough, the backarc of Kyushu. Geophysical Research Letters, 27(2): 277–280. doi: 10.1029/1999GL008385
    [72]
    Sajona F G, Maury R C. 1998. Association of adakites with gold and copper mineralization in the philippines. Comptes Rendus De L’Académie Des Sciences-Series IIA-Earth and Planetary Science, 326(1): 27–34
    [73]
    Sajona F G, Maury R C, Bellon H, et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007–1010. doi: 10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2
    [74]
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [75]
    Scholz C H, Small C. 1997. The effect of seamount subduction on seismic coupling. Geology, 25(6): 487–490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2
    [76]
    Sdrolias M, Roest W R, Müller R D. 2004. An expression of Philippine Sea plate rotation: The Parece Vela and Shikoku basins. Tectonophysics, 394(1–2): 69–86
    [77]
    Sella G F, Dixon T H, Mao Ailin. 2002. REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(B4): ETG 11-1–ETG 11-30. doi: 10.1029/2000JB000033
    [78]
    Seno T, Maruyama S. 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1–4): 53–84
    [79]
    Shi Xuejian. 1998. Spatial differences of the earthquake distribution along the island-arcs in the western Pacific and their causes. Seismology and Geology (in Chinese), 20(4): 399–404
    [80]
    Shimoyama S, Kinoshita H, Miyahara M, et al. 1999. Mode of vertical crustal movements during the late quaternary in Kyushu, Japan, deduced from heights of ancient shorelines. Tectonophysics, 302(1–2): 9–22
    [81]
    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962. doi: 10.1126/science.277.5334.1956
    [82]
    Sugimoto T, Shibata T, Yoshikawa M, et al. 2006. Sr-Nd-Pb isotopic and major and trace element compositions of the Yufu-Tsurumi volcanic rocks: implications for the magma genesis of the Yufu-Tsurumi volcanoes, northeast Kyushu, Japan. Journal of Mineralogical and Petrological Sciences, 101(5): 270–275. doi: 10.2465/jmps.101.270
    [83]
    Sun Weidong, Ling Mingxing, Yang Xiaoyong, et al. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China Earth Sciences, 53(4): 475–484. doi: 10.1007/s11430-010-0024-0
    [84]
    Sun Weidong, Zhang Hong, Ling Mingxing, et al. 2011. The genetic association of adakites and Cu-Au ore deposits. International Geology Review, 53(5–6): 691–703
    [85]
    Tahara M, Uehira K, Shimizu H, et al. 2008. Seismic velocity structure around the Hyuganada region, Southwest Japan, derived from seismic tomography using land and OBS data and its implications for interplate coupling and vertical crustal uplift. Physics of the Earth and Planetary Interiors, 167(1–2): 19–33
    [86]
    Thiéblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: The adakite connection. Comptes Rendus De L’Académie Des Sciences Series IIA Earth and Planetary Science, 325(2): 103–109
    [87]
    Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    [88]
    Wang Kelin, Wada I, Ishikawa Y. 2004. Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. Journal of Geophysical Research: Solid Earth, 109(B8): B08304
    [89]
    Watts A B, Koppers A A P, Robinson D P. 2010. Seamount subduction and earthquakes. Oceanography, 23(1): 166–173. doi: 10.5670/oceanog.2010.68
    [90]
    Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45): 409–410
    [91]
    Xia Shaohong, Sun Jinlong, Huang Haibo. 2015. Degree of serpentinization in the forearc mantle wedge of Kyushu subduction zone: Quantitative evaluations from seismic velocity. Marine Geophysical Research, 36(2–3): 101–112
    [92]
    Xia Chenglong, Zheng Yanpeng, Dong Dongdong, et al. 2017. Characteristics of magnetic lineations and reconstruction of seafloor spreading processes of the Philippine Sea Basin since 61 Ma. Marine Geology and Quaternary Geology (in Chinese), 37(1): 30–40
    [93]
    Xia Shaohong, Zhao Dapeng, Qiu Xuelin. 2008. Tomographic evidence for the subducting oceanic crust and forearc mantle serpentinization under Kyushu, Japan. Tectonophysics, 449(1–4): 85–96
    [94]
    Yamamoto Y, Obana K, Takahashi T, et al. 2014. Seismicity and structural heterogeneities around the western Nankai Trough subduction zone, southwestern Japan. Earth and Planetary Science Letters, 396: 34–45. doi: 10.1016/j.jpgl.2014.04.006
    [95]
    Yan Quanshu, Shi Xuefa. 2011. Geological comparative studies of Japan arc system and Kyushu-Palau arc. Acta Oceanologica Sinica, 30(4): 107–121. doi: 10.1007/s13131-011-0134-3
    [96]
    Yan Quanshu, Shi Xuefa. 2014. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone. Haiyang Xuebao (in Chinese), 36(5): 107–123
    [97]
    Yogodzinski G M, Lees J M, Churikova T G, et al. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500–504. doi: 10.1038/35054039
    [98]
    Zang Shaoxian, Ning Jieyuan. 1996. Study on the subduction zone in western pacific and its implication for the geodynamics. Acta Geophysica Sinica (in Chinese), 39(2): 188–202
    [99]
    Zhang Jie, Li Jiabiao, Ding Weiwei. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge. Advances in Marine Science (in Chinese), 30(4): 595–607
    [100]
    Zhao Dapeng, Asamori K, Iwamori H. 2000. Seismic structure and magmatism of the young Kyushu subduction zone. Geophysical Research Letters, 27(14): 2057–2060. doi: 10.1029/2000GL011512
    [101]
    Zhao Dapeng, Yanada T, Hasegawa A, et al. 2012. Imaging the subducting slabs and mantle upwelling under the Japan islands. Geophysical Journal International, 190(2): 816–828. doi: 10.1111/j.1365-246X.2012.05550.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1269) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return