Volume 41 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Ying Zhang, Lei Meng, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Yang Gao, Li Gong. Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2022, 41(8): 62-73. doi: 10.1007/s13131-021-1911-2
Citation: Ying Zhang, Lei Meng, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Yang Gao, Li Gong. Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2022, 41(8): 62-73. doi: 10.1007/s13131-021-1911-2

Comparative mitochondrial genome analysis of Sesarmidae and its phylogenetic implications

doi: 10.1007/s13131-021-1911-2
Funds:  The National Natural Science Foundation of China under contract No. 41706176; the Basic Scientific Research Operating Expenses of Zhejiang Provincial Universities under contract No. 2019J00022.
More Information
  • Corresponding author: E-mail address: gongli1027@163.com, gongli@zjou.edu.cn
  • Received Date: 2021-04-20
  • Accepted Date: 2021-08-06
  • Available Online: 2022-07-20
  • Publish Date: 2022-08-15
  • Here, we sequenced the complete mitogenome of Parasesarma eumolpe (Brachyura: Grapsoidea: Sesarmidae) for the first time. The characteristics of this newly sequenced mitogenome were described and compared with other Sesarmidae species. The 15 646-bp mitogenome contains 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A-T rich region. All of the PCGs are initiated by the start codon ATN and terminated by the standard TAN codon or an incomplete T. The pairwise Ka/Ks ratio analysis shows that all 13 PCGs are under purifying selection, whereas the ATP8 gene is an outlier, with pairwise comparison values ranging from neutral selection (0.000) to positive selection (1.039). The gene arrangement of P. eumolpe compared with ancestral Decapoda shows the translocation of two tRNAs (tRNA-His and tRNA-Gln), which is identical to other Sesarmidae species. Phylogenetic analyses show that all Sesarmidae species are placed into one group, and the polyphyly of Eriphioidea, Ocypodoidea, and Grapsoidea is well supported. The relationship between gaps in the QIM region and the phylogeny of Sesarmidae is analyzed. It is obvious that both the G5 (the gap between Q and I) and G6 (the gap between I and M) decrease progressively with the evolution process. These results will help to better understand the genomic evolution within Sesarmidae and provide insights into the phylogeny of Brachyura.
  • loading
  • [1]
    Arndt A, Smith M J. 1998. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Molecular Biology and Evolution, 15(8): 1009–1016. doi: 10.1093/oxfordjournals.molbev.a025999
    [2]
    Basso A, Babbucci M, Pauletto M, et al. 2017. The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura. Scientific Reports, 7(1): 4096. doi: 10.1038/s41598-017-04168-9
    [3]
    Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573–580. doi: 10.1093/nar/27.2.573
    [4]
    Bernt M, Donath A, Jühling F, et al. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2): 313–319. doi: 10.1016/j.ympev.2012.08.023
    [5]
    Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780. doi: 10.1093/nar/27.8.1767
    [6]
    Boussau B, Walton Z, Delgado J A, et al. 2014. Strepsiptera, phylogenomics and the long branch attraction problem. PLoS ONE, 9(10): e107709. doi: 10.1371/journal.pone.0107709
    [7]
    Cantatore P, Gadaleta M N, Roberti M, et al. 1987. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature, 329(6142): 853–855. doi: 10.1038/329853a0
    [8]
    Chen Jianqin, Xing Yuhui, Yao Wenjia, et al. 2018. Characterization of four new mitogenomes from Ocypodoidea & Grapsoidea, and phylomitogenomic insights into thoracotreme evolution. Gene, 675: 27–35. doi: 10.1016/j.gene.2018.06.088
    [9]
    Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4): e18
    [10]
    Evans N. 2018. Molecular phylogenetics of swimming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classification and suggests a single derived origin of symbiotic taxa. PeerJ, 6: e4260. doi: 10.7717/peerj.4260
    [11]
    Gillikin D P, Schubart C D. 2004. Ecology and systematics of mangrove crabs of the genus Perisesarma (Crustacea: Brachyura: Sesarmidae) from East Africa. Zoological Journal of the Linnean Society, 141(3): 435–445. doi: 10.1111/j.1096-3642.2004.00125.x
    [12]
    Gong Li, Jiang Hui, Zhu Kehua, et al. 2019. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura. Gene, 695: 75–83. doi: 10.1016/j.gene.2019.01.035
    [13]
    Gong Li, Lu Xinting, Luo Hairong, et al. 2020a. Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: new gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). International Journal of Biological Macromolecules, 149: 1232–1240. doi: 10.1016/j.ijbiomac.2020.02.017
    [14]
    Gong Li, Lu Xinting, Wang Zhifu, et al. 2020b. Novel gene rearrangement in the mitochondrial genome of Coenobita brevimanus (Anomura: Coenobitidae) and phylogenetic implications for Anomura. Genomics, 112(2): 1804–1812. doi: 10.1016/j.ygeno.2019.10.012
    [15]
    Gong Li, Shi Wei, Si Lizhen, et al. 2013. Rearrangement of mitochondrial genome in fishes. Zoological Research, 34(6): 666–673
    [16]
    Guo Xinhong, Liu Shaojun, Liu Yun. 2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture, 224(1–4): 25–38. doi: 10.1016/S0044-8486(03)00168-6
    [17]
    Gyllensten U, Wharton D, Josefsson A, et al. 1991. Paternal inheritance of mitochondrial DNA in mice. Nature, 352(6332): 255–257. doi: 10.1038/352255a0
    [18]
    Hebert P D N, Ratnasingham S, De Waard J R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270(S1): S96–S99
    [19]
    Kumar S, Stecher G, Li M, et al. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547–1549. doi: 10.1093/molbev/msy096
    [20]
    Kumazawa Y, Nishida M. 1995. Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Molecular Biology and Evolution, 12(5): 759–772
    [21]
    Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947–2948. doi: 10.1093/bioinformatics/btm404
    [22]
    Lavrov D V, Boore J L, Brown W M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular Biology and Evolution, 19(2): 163–169. doi: 10.1093/oxfordjournals.molbev.a004068
    [23]
    Lee S Y. 1998. Ecological role of grapsid crabs in mangrove ecosystems: a review. Marine and Freshwater Research, 49(4): 335–343. doi: 10.1071/MF97179
    [24]
    Liu Qiuning, Xin Zhaozhe, Zhu Xiaoyu, et al. 2017. A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome. Biochemical and Biophysical Research Communications, 489(2): 149–154. doi: 10.1016/j.bbrc.2017.05.115
    [25]
    Lowe T M, Chan P P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1): W54–W57. doi: 10.1093/nar/gkw413
    [26]
    Lu Xinting, Gong Li, Zhang Ying, et al. 2020. The complete mitochondrial genome of Calappa bilineata: the first representative from the family Calappidae and its phylogenetic position within Brachyura. Genomics, 112(3): 2516–2523. doi: 10.1016/j.ygeno.2020.02.003
    [27]
    Lü Zhenming, Zhu Kehua, Jiang Hui, et al. 2019. Complete mitochondrial genome of Ophichthus brevicaudatus reveals novel gene order and phylogenetic relationships of Anguilliformes. International Journal of Biological Macromolecules, 135: 609–618. doi: 10.1016/j.ijbiomac.2019.05.139
    [28]
    Luo Hairong, Kong Xiaoyu, Chen Shixi, et al. 2019. Mechanisms of gene rearrangement in 13 bothids based on comparison with a newly completed mitogenome of the threespot flounder, Grammatobothus polyophthalmus (Pleuronectiformes: Bothidae). BMC Genomics, 20(1): 792. doi: 10.1186/s12864-019-6128-9
    [29]
    Ma Kayan, Qin Jing, Lin Chia-Wei, et al. 2019. Phylogenomic analyses of brachyuran crabs support early divergence of primary freshwater crabs. Molecular Phylogenetics and Evolution, 135: 62–66. doi: 10.1016/j.ympev.2019.02.001
    [30]
    Ma Zhihong, Yang Xuefen, Bercsenyi M, et al. 2015. Comparative mitogenomics of the genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) revealed conserved gene rearrangement and high sequence variations. International Journal of Molecular Sciences, 16(10): 25031–25049. doi: 10.3390/ijms161025031
    [31]
    Macey J R, Larson A, Ananjeva N B, et al. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14(1): 91–104. doi: 10.1093/oxfordjournals.molbev.a025706
    [32]
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1): 10–12
    [33]
    McKnight M L, Shaffer H B. 1997. Large, rapidly evolving intergenic spacers in the mitochondrial DNA of the salamander family Ambystomatidae (Amphibia: Caudata). Molecular Biology and Evolution, 14(11): 1167–1176. doi: 10.1093/oxfordjournals.molbev.a025726
    [34]
    Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. doi: 10.1146/annurev.es.18.110187.001413
    [35]
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268–274. doi: 10.1093/molbev/msu300
    [36]
    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470–474. doi: 10.1038/290470a0
    [37]
    Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353–358. doi: 10.1007/BF01215182
    [38]
    Philippe H. 2000. Opinion: long branch attraction and protist phylogeny. Protist, 151(4): 307–316. doi: 10.1078/S1434-4610(04)70029-2
    [39]
    Poulton J, Deadman M E, Bindoff L, et al. 1993. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics, 2(1): 23–30. doi: 10.1093/hmg/2.1.23
    [40]
    Ray D A, Densmore L. 2002. The crocodilian mitochondrial control region: general structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4): 334–345. doi: 10.1002/jez.10198
    [41]
    Ren Lipin, Zhang Xiangyan, Li Yi, et al. 2020. Comparative analysis of mitochondrial genomes among the subfamily Sarcophaginae (Diptera: Sarcophagidae) and phylogenetic implications. International Journal of Biological Macromolecules, 161: 214–222. doi: 10.1016/j.ijbiomac.2020.06.043
    [42]
    Ronquist F, Teslenko M, Van Der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542. doi: 10.1093/sysbio/sys029
    [43]
    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, et al. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12): 3299–3302. doi: 10.1093/molbev/msx248
    [44]
    Ruan Huiting, Li Min, Li Zhenhai, et al. 2020. Comparative analysis of complete mitochondrial genomes of three Gerres fishes (Perciformes: Gerreidae) and primary exploration of their evolution history. International Journal of Molecular Sciences, 21(5): 1874. doi: 10.3390/ijms21051874
    [45]
    Sanchez G, Tomano S, Yamashiro C, et al. 2016. Population genetics of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers. Fisheries Research, 175: 1–9. doi: 10.1016/j.fishres.2015.11.005
    [46]
    Sato M, Sato K. 2013. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(8): 1979–1984. doi: 10.1016/j.bbamcr.2013.03.010
    [47]
    Shahdadi A, Ng P K L, Schubart C D. 2018. Morphological and phylogenetic evidence for a new species of Parasesarma De Man, 1895 (Crustacea: Decapoda: Brachyura: Sesarmidae) from the Malay Peninsula, previously referred to as Parasesarma indiarum (Tweedie, 1940). Raffles Bulletin of Zoology, 66: 739–762
    [48]
    Shahdadi A, Schubart C D. 2015. Evaluating the consistency and taxonomic importance of cheliped and other morphological characters that potentially allow identification of species of the genus Perisesarma De Man, 1895 (Brachyura, Sesarmidae). Crustaceana, 88(10−11): 1079–1095. doi: 10.1163/15685403-00003473
    [49]
    Shahdadi A, Schubart C D. 2018. Taxonomic review of Perisesarma (Decapoda: Brachyura: Sesarmidae) and closely related genera based on morphology and molecular phylogenetics: new classification, two new genera and the questionable phylogenetic value of the epibranchial tooth. Zoological Journal of the Linnean Society, 182(3): 517–548. doi: 10.1093/zoolinnean/zlx032
    [50]
    Stothard P, Wishart D S. 2005. Circular genome visualization and exploration using CGView. Bioinformatics, 21(4): 537–539. doi: 10.1093/bioinformatics/bti054
    [51]
    Sun Ziqiang, Liu Yingqi, Wilson J J, et al. 2019. Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. International Journal of Biological Macromolecules, 129: 110–115. doi: 10.1016/j.ijbiomac.2019.01.205
    [52]
    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564–577. doi: 10.1080/10635150701472164
    [53]
    Tan M H, Gan Hanming, Lee Y P, et al. 2018. ORDER within the chaos: insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution, 127: 320–331. doi: 10.1016/j.ympev.2018.05.015
    [54]
    Thyagarajan B, Padua R A, Campbell C. 1996. Mammalian mitochondria possess homologous DNA recombination activity. Journal of Biological Chemistry, 271(44): 27536–27543. doi: 10.1074/jbc.271.44.27536
    [55]
    Tsang L M, Schubart C D, Ahyong S T, et al. 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs. Molecular Biology and Evolution, 31(5): 1173–1187. doi: 10.1093/molbev/msu068
    [56]
    Tsaousis A D, Martin D P, Ladoukakis E D, et al. 2005. Widespread recombination in published animal mtDNA sequences. Molecular Biology and Evolution, 22(4): 925–933. doi: 10.1093/molbev/msi084
    [57]
    Tweedie M W F. 1954. Notes on grapsoid crabs from the Raffles Museum, Nos. 3, 4 and 5. Bulletin of the Raffles Museum, 25: 118–128
    [58]
    Wang Yuan, Chen Jing, Jiang Liyun, et al. 2015. Hemipteran mitochondrial genomes: features, structures and implications for phylogeny. International Journal of Molecular Sciences, 16(6): 12382–12404
    [59]
    Wang Ziqian, Shi Xuejia, Guo Huayun, et al. 2020a. Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs. Genomics, 112(1): 10–19. doi: 10.1016/j.ygeno.2019.06.004
    [60]
    Wang Zhengfei, Shi Xuejia, Tao Yitao, et al. 2019. The complete mitochondrial genome of Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs. Genomics, 111(4): 799–807. doi: 10.1016/j.ygeno.2018.05.002
    [61]
    Wang Qi, Tang Dan, Guo Huayun, et al. 2020b. Comparative mitochondrial genomic analysis of Macrophthalmus pacificus and insights into the phylogeny of the Ocypodoidea & Grapsoidea. Genomics, 112(1): 82–91. doi: 10.1016/j.ygeno.2019.12.012
    [62]
    Wang Zhengfei, Wang Ziqian, Shi Xuejia, et al. 2018. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. International Journal of Biological Macromolecules, 118: 31–40. doi: 10.1016/j.ijbiomac.2018.06.056
    [63]
    Wu Xiangyun, Li Xiaoling, Li Lu, et al. 2012. New features of Asian Crassostrea oyster mitochondrial genomes: a novel alloacceptor tRNA gene recruitment and two novel ORFs. Gene, 507(2): 112–118. doi: 10.1016/j.gene.2012.07.032
    [64]
    Xin Zhaozhe, Liu Yu, Tang Boping, et al. 2018. A comprehensive phylogenetic analysis of Grapsoidea crabs (Decapoda: Brachyura) based on mitochondrial cytochrome oxidase subunit 1 (CO1) genes. Turkish Journal of Zoology, 42: 46–52. doi: 10.3906/zoo-1703-46
    [65]
    Yang Ziheng. 2006. Computational Molecular Evolution. Oxford: Oxford University Press, 259–292
    [66]
    Yang Zhihui, Yang Tingting, Liu Yu, et al. 2019. The complete mitochondrial genome of Sinna extrema (Lepidoptera: Nolidae) and its implications for the phylogenetic relationships of Noctuoidea species. International Journal of Biological Macromolecules, 137: 317–326. doi: 10.1016/j.ijbiomac.2019.06.238
    [67]
    Zhang Zhiqiang. 2011. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148: 1–237. doi: 10.11646/zootaxa.3148.1.1
    [68]
    Zhang Dong, Gao Fangluan, Jakovlić I, et al. 2020a. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348–355. doi: 10.1111/1755-0998.13096
    [69]
    Zhang Bo, Wu Yingying, Wang Xin, et al. 2020b. Comparative analysis of mitochondrial genome of a deep-sea crab Chaceon granulates reveals positive selection and novel genetic features. Journal of Oceanology and Limnology, 38(2): 427–437. doi: 10.1007/s00343-019-8364-x
    [70]
    Zhang Zhan, Xing Yuhui, Cheng Jiajia, et al. 2020c. Phylogenetic implications of mitogenome rearrangements in East Asian potamiscine freshwater crabs (Brachyura: Potamidae). Molecular Phylogenetics and Evolution, 143: 106669. doi: 10.1016/j.ympev.2019.106669
    [71]
    Zhao Ling, Zheng Zheming, Huang Yuan, et al. 2011. Comparative analysis of the mitochondrial control region in Orthoptera. Zoological Studies, 50(3): 385–393
    [72]
    Zhuang Xuan, Cheng C H C. 2010. ND6 gene “lost” and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids. Molecular Biology and Evolution, 27(6): 1391–1403. doi: 10.1093/molbev/msq026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (324) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return