Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Renjie Zhao, Quanshu Yan, Haitao Zhang, Yili Guan, Xuefa Shi. Chemical composition of sediments from the subducting Cocos Ridge segment at the Southern Central American subduction zone[J]. Acta Oceanologica Sinica, 2022, 41(1): 58-75. doi: 10.1007/s13131-021-1920-1
Citation: Renjie Zhao, Quanshu Yan, Haitao Zhang, Yili Guan, Xuefa Shi. Chemical composition of sediments from the subducting Cocos Ridge segment at the Southern Central American subduction zone[J]. Acta Oceanologica Sinica, 2022, 41(1): 58-75. doi: 10.1007/s13131-021-1920-1

Chemical composition of sediments from the subducting Cocos Ridge segment at the Southern Central American subduction zone

doi: 10.1007/s13131-021-1920-1
Funds:  The National Key Research and Development Program of China under contract No. 2017YFC1405502; the National Natural Science Foundation of China under contract Nos 41776070, 41322036 and 41276003; the AoShan Talents Program Supported by Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No. 2015ASTP-ES16; the Fund of Taishan Scholarship from Shandong Province.
More Information
  • Corresponding author: E-mail: yanquanshu@163.com
  • Received Date: 2021-02-24
  • Accepted Date: 2021-04-03
  • Available Online: 2021-12-29
  • Publish Date: 2022-01-10
  • Subducted sediments play an important role in the magmatism at subduction zones and the formation of mantle heterogeneity, making them an important tracer for shallow crustal processes and deep mantle processes. Therefore, ascertaining the chemical compositions of different subduction end-members is a prerequisite for using subducted sediments to trace key geological processes. We reports here the comprehensive major and trace element analyses of 52 samples from two holes (U1414A and U1381C) drilled on the subducting Cocos Ridge segment at the Southern Central American (SCA) subduction zone during Integrated Ocean Drilling Program (IODP) Expedition 344. The results show that the SCA subducting sediments contain 51% (wt%) CaCO3, 27% (wt%) terrigenous material, 16% (wt%) opal, and 6% (wt%) mineral-bound H2O+. Compared to the global trenches subducting sediment, the SCA subducting sediments are enriched in biogenic elements (Ba, Sr, and Ca), and depleted in high field strength elements (Nb, Ta, Zr, Hf, and Ti) and alkali elements (K, Rb, and Cs). Meanwhile, the sediments in this area were affected by the carbonate crash event, which could have been caused by a ~800 m rise in the carbonate compensation depth at 11 Ma in the Guatemala Basin. The reason for the sedimentary hiatus at Hole U1381C may be the closure of the Panama Isthmus and the collision between the Cocos Ridge and the Middle America Trench. In addition, the sediments from the subducting Cocos Ridge segment have influenced the petrogenesis of volcanic lavas erupted in the SCA.
  • loading
  • [1]
    Abratis M, Worner G. 2001. Ridge collision, slab–window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology, 29(2): 127–130. doi: 10.1130/0091-7613(2001)029<0127:RCSWFA>2.0.CO;2
    [2]
    Aubouin J, Von Huene R. 1982. Initial Reports of the Deep Sea Drilling Project, Volume 67. Washington, D. C. : U. S. Government Printing Office, 799
    [3]
    Barckhausen U, Ranero C R, Von Huene R, et al. 2001. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. Journal of Geophysical Research: Solid Earth, 106(B9): 19207–19220. doi: 10.1029/2001JB000238
    [4]
    Carr M J. 1984. Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. Journal of Volcanology and Geothermal Research, 20(3−4): 231–252. doi: 10.1016/0377-0273(84)90041-6
    [5]
    Carr M J, Feigenson M D, Bennett E A. 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105(4): 369–380. doi: 10.1007/BF00286825
    [6]
    Carr M J, Feigenson M D, Patino L C, et al. 2003. Volcanism and geochemistry in Central America: progress and problems. In: Eiler J M, ed. Inside the Subduction Factory, Geophysical Monograph Series. Washington, D. C: AGU, 153–174
    [7]
    Chan L H, Kastner M. 2000. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth and Planetary Science Letters, 183(1−2): 275–290. doi: 10.1016/S0012-821X(00)00275-2
    [8]
    DeMets C. 2001. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American volcanic arc. Geophysical Research Letters, 28(21): 4043–4046. doi: 10.1029/2001GL013518
    [9]
    Dzierma Y, Rabbel W, Thorwart M M, et al. 2011. The steeply subducting edge of the Cocos Ridge: Evidence from receiver functions beneath the northern Talamanca Range, south-central Costa Rica. Geochemistry, Geophysics, Geosystems, 12(4): Q04S30,
    [10]
    Feigenson M D, Carr M J. 1993. The source of Central American lavas: inferences from geochemical inverse modeling. Contributions to Mineralogy and Petrology, 113(2): 226–235. doi: 10.1007/BF00283230
    [11]
    Feigenson M D, Carr M J, Maharaj S V, et al. 2004. Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochemistry, Geophysics, Geosystems, 5(6): Q06001,
    [12]
    Gazel E, Carr M J, Hoernle K, et al. 2009. Galapagos-OIB signature in Southern Central America: Mantle refertilization by arc-hot spot interaction. Geochemistry, Geophysics, Geosystems, 10(2): Q02S11,
    [13]
    Gazel E, Hoernle K, Carr M J, et al. 2011. Plume-subduction interaction in Southern Central America: Mantle upwelling and slab melting. Lithos, 121(1−4): 117–134. doi: 10.1016/j.lithos.2010.10.008
    [14]
    Ge Zhenmin, Yan Quanshu, Zhao Renjie, et al. 2020. Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge. Haiyang Xuebao (in Chinese), 42(7): 93–107
    [15]
    Goss A R, Kay S M, 2006. Steep REE patterns and enriched Pb isotopes in Southern Central American arc magmas: Evidence for forearc subduction erosion?. Geochemistry, Geophysics, Geosystems, 7(5): Q05016,
    [16]
    Harpp K S, Wanless V D, Otto R H, et al. 2005. The Cocos and Carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction. Journal of Petrology, 46(1): 109–133. doi: 10.1093/petrology/egh064
    [17]
    Harris R N, Sakaguchi A, Petronotis K, et al. 2013. Costa Rica seismogenesis project, Program A Stage 2 (CRISP–A2). In: Proceedings of the Integrated Ocean Drilling Program, Expedition 344. College Station, TX, USA: Integrated Ocean Drilling Program,
    [18]
    Hoernle K, Abt D L, Fischer K M, et al. 2008. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451(7182): 1094–1097. doi: 10.1038/nature06550
    [19]
    Hoernle K, Werner R, Morgan J P, et al. 2000. Existence of complex spatial zonation in the Galápagos plume. Geology, 28(5): 435–438. doi: 10.1130/0091-7613(2000)28<435:EOCSZI>2.0.CO;2
    [20]
    Johnson M C, Plank T. 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12): 1007,
    [21]
    Li Yongxiang, Zhao Xixi, Jovane L G, et al. 2015. Paleomagnetic constraints on the tectonic evo-lution of the Costa Rican subduction zone: New results from sedimentary successions of IODP drill sites from the Cocos Ridge. Geochemistry, Geophysics, Geosystems, 16(12): 4479–4493,
    [22]
    Li Yongxiang, Zhao Xixi, Xie Siyi, et al. 2018. Paleomagnetism of IODP Site U1380: implications for the forearc deformation in the Costa Rican erosive convergent margin. Scientific Reports, 8: 11430. doi: 10.1038/s41598-018-29243-7
    [23]
    Lyle M, Dadey K A, Farrell J W. 1995. The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama gateway. In: Pisias N G, Mayer L A, Janecek T R, et al., eds. Proceeding of the Ocean Drilling Program, Scientific Results, Vol. 138. College Station, TX, USA: Ocean Drilling Program, 821–838
    [24]
    Maria I S, Demetrio B, Baxter A T, et al. 2017. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica. Geochemistry, Geophysics, Geosystems, 18(3): 889–906, doi: 10.1002/2016GC006623
    [25]
    Morell K D. 2016. Seamount, ridge, and transform subduction in Southern Central America. Tectonics, 35(2): 357–385. doi: 10.1002/2015TC003950
    [26]
    Newkirk D R, Martin E E. 2009. Circulation through the Central American Seaway during the Miocene carbonate crash. Geology, 37(1): 87–90. doi: 10.1130/G25193A.1
    [27]
    Nielsen S G, Prytulak J, Blusztajn J, et al. 2017. Thallium isotopes as tracers of recycled materials in subduction zones: Review and new data for lavas from Tonga-Kermadec and Central America. Journal of Volcanology and Geothermal Research, 339: 23–40. doi: 10.1016/j.jvolgeores.2017.04.024
    [28]
    Patino L C, Carr M J, Feigenson M D. 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138(3): 265–283. doi: 10.1007/s004100050562
    [29]
    Pearce J A, Stern R J. 2006. Origin of back-arc basin magmas: trace element and isotope perspectives. In: Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington, D. C: American Geophysical Union, 166: 63–86. doi: 10.1029/166GM06
    [30]
    Pearce J A, Stern R J, Bloomer S H, et al. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006,
    [31]
    Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921–944. doi: 10.1093/petrology/egi005
    [32]
    Plank T. 2014. The chemical composition of subducting sediments. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Oxford, UK: Elsevier, 607–629. doi: 10.1016/B978-0-08-095975-7.00319-3
    [33]
    Plank T, Balzer V, Carr M. 2002. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama Gateway. Geology, 30(12): 1087–1090. doi: 10.1130/0091-7613(2002)030<1087:NVRPCA>2.0.CO;2
    [34]
    Plank T, Kelley K A, Murray R W, et al. 2007. Chemical composition of sediments subducting at the Izu-Bonin trench. Geochemistry, Geophysics, Geosystems, 8(4): Q04I16,
    [35]
    Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(4−5): 325–394. doi: 10.1016/S0009-2541(97)00150-2
    [36]
    Plank T, Manning C E. 2019. Subducting carbon. Nature, 574(7778): 343–352. doi: 10.1038/s41586-019-1643-z
    [37]
    Protti M, Guendel F, McNally K. 1995. Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica, In: Mann P, ed. Geologic and Tectonic Development of the Carribbean Plate Boundary in Southern Central America. Boulder, CO, USA: Geological Society of America, 309–326
    [38]
    Reijmer J J, Betzler C, Kroon D, et al. 2002. Bahamian carbonate platform development in response to sea-level changes and the closure of the Isthmus of Panama. International Journal of Earth Sciences, 91(3): 482–489. doi: 10.1007/s00531-001-0235-x
    [39]
    Rudnick R L, Gao Shan. 2014. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford, UK: Elsevier, 1–51. doi: 10.1016/B978-0-08-095975-7.00301-6
    [40]
    Saginor I, Gazel E, Condie C, et al. 2013. Evolution of geochemical variations along the Central American volcanic front. Geochemistry, Geophysics, Geosystems, 14(10): 4504–4522,
    [41]
    Sandoval M I, Boltovskoy D, Baxter A T, et al. 2017. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica. Geochemistry, Geophysics, Geosystems, 18(3): 889–906,
    [42]
    Schindlbeck J C, Kutterolf S, Freundt A, et al. 2015. The miocene galápagos ash layer record of Integrated Ocean Drilling Program legs 334 and 344: Ocean–island explosive volcanism during plume–ridge interaction. Geology, 43(7): 599–602. doi: 10.1130/G36645.1
    [43]
    Schindlbeck J C, Kutterolf S, Freundt A, et al. 2016a. Late Cenozoic tephrostratigraphy offshore the Southern Central American volcanic arc: 1. Tephra ages and provenance. Geochemistry, Geophysics, Geosystems, 17(11): 4641–4668,
    [44]
    Schindlbeck J C, Kutterolf S, Freundt A, et al. 2016b. Late Cenozoic tephrostratigraphy offshore the Southern Central American volcanic arc: 2. Implications for magma production rates and subduction erosion. Geochemistry, Geophysics, Geosystems, 17(11): 4585–4604,
    [45]
    Solomon E, Kastner M, Robertson G, 2006. Barium cycling at the convergent Costa Rican Margin. In: Morris J D, ed. Proceedings of Ocean Drilling Program, Scientific Results, Vol. 205. College Station, TX, USA: Ocean Drilling Program,
    [46]
    Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171: 208–223,
    [47]
    Stone R. 2013. Battle for the Americas. Science, 341(6143): 230–233. doi: 10.1126/science.341.6143.230
    [48]
    Straub S M, Gómez-Tuena A, Bindeman I N, et al. 2015. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochimica et Cosmochimica Acta, 166: 29–52. doi: 10.1016/j.gca.2015.06.001
    [49]
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313–345,
    [50]
    Tera F, Brown L, Morris J, et al. 1986. Sediment incorporation in island-arc magmas: inferences from 10Be. Geochimica et Cosmochimica Acta, 50(4): 535–550. doi: 10.1016/0016-7037(86)90103-1
    [51]
    Vannucchi P, Fisher D M, Bier S, et al. 2006. From seamount accretion to tectonic erosion: Formation of Osa mélange and the effects of Cocos Ridge subduction in southern Costa Rica. Tectonics, 25(2): TC2004. doi: 10.1029/2005TC001855
    [52]
    Vannucchi P, Morgan J P, Balestrieri M L. 2016. Subduction erosion, and the de-construction of continental crust: the Central America case and its global implications. Gondwana Research, 40: 184–198. doi: 10.1016/j.gr.2016.10.001
    [53]
    Vannucchi P, Sak P B, Morgan J P, et al. 2013. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology, 41(9): 995–998. doi: 10.1130/G34355.1
    [54]
    Vannucchi P, Ujiie K, Stroncik N, et al. 2012. Costa Rica Seismogenesis Project, Program A Stage 1 (CRISP–A1). In: Proceedings of the Integrated Ocean Drilling Program. College Station, TX, USA: Integrated Ocean Drilling Program,
    [55]
    Walker J A, Gazel E. 2014. Igneous rock associations 13. Focusing on the Central American subduction zone. Geoscience Canada, 41(1): 57–74. doi: 10.12789/geocanj.2014.41.036
    [56]
    Walther C H E. 2003. The crustal structure of the Cocos Ridge off Costa Rica. Journal of Geophysical Research: Solid Earth, 108(B3): 2136. doi: 10.1029/2001JB000888
    [57]
    Werner R, Hoernle K, Barckhausen U, et al. 2003. Geodynamic evolution of the Galápagos hot spot system (central East Pacific) over the past 20 m. y. : Constraints from morphology, geochemistry, and magnetic anomalies. Geochemistry, Geophysics, Geosystems, 4(12): 1108,
    [58]
    Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1−2): 53–72. doi: 10.1016/j.jpgl.2004.12.005
    [59]
    Yan Quanshu, Shi Xuefa. 2014. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone. Haiyang Xuebao, 36(5): 107–123. doi: 10.3969/j.issn.0253-4193.2014.05.012
    [60]
    Yan Quanshu, Zhang Pingyang, Metcalfe I, et al. 2019. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes. Mineralogy and Petrology, 113(6): 803–820. doi: 10.1007/s00710-019-00683-x
    [61]
    Zhang Haitao, Yan Quanshu, Li Chuanshun, et al. 2019. Geochemistry of diverse lava types from the Lau Basin (South West Pacific): Implications for complex back-arc mantle dynamics. Geological Journal, 54(6): 3643–3659. doi: 10.1002/gj.3354
    [62]
    Zhao Renjie, Yan Quanshu, Zhang Haitao, et al. 2020. The chemical composition of global subducting sediments and its geological significance. Advances in Earth Science, 35(8): 789–803. doi: 10.11867/j.issn.1001-8166.2020.068
    [63]
    Zhao Renjie, Yan Quanshu, Zhang Haitao, et al. 2021. Chemical composition of sediments from the upper plate at the Southern Central American subduction zone and its geological significance. Acta Petrologica Sinica, 37(7): 1949–1963. doi: 10.18654/1000-0569/2021.07.01
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (552) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return