Volume 41 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
Tiezhu Mi, Shibin Zhao, Minzhi Qiu, Bochao Xu, Qingzhen Yao, Yu Zhen, Zhiqing Lai, Fang Zhang, Zhigang Yu. Using LA-ICP-MS to analysis elemental composition of statoliths of Scyphozoan jellyfish[J]. Acta Oceanologica Sinica, 2022, 41(11): 81-87. doi: 10.1007/s13131-022-2034-0
Citation: Tiezhu Mi, Shibin Zhao, Minzhi Qiu, Bochao Xu, Qingzhen Yao, Yu Zhen, Zhiqing Lai, Fang Zhang, Zhigang Yu. Using LA-ICP-MS to analysis elemental composition of statoliths of Scyphozoan jellyfish[J]. Acta Oceanologica Sinica, 2022, 41(11): 81-87. doi: 10.1007/s13131-022-2034-0

Using LA-ICP-MS to analysis elemental composition of statoliths of Scyphozoan jellyfish

doi: 10.1007/s13131-022-2034-0
Funds:  The National Key Research and Development Program of China under contract No. 2017YFC1404402; the National Natural Science Foundation of China under contract Nos U1906210 and 41876075.
More Information
  • Corresponding author: E-mail: mitiezhu@ouc.edu.cn
  • Received Date: 2021-11-01
  • Accepted Date: 2022-02-14
  • Available Online: 2022-10-09
  • Publish Date: 2022-11-01
  • Scyphozoan jellyfish outbreak events are drawing increasing attentions during the past decade. Elemental compositions of statoliths are helpful to understand jellyfish life history and blooming mechanisms, but very rare endeavor has been focused on the Scyphozoan class. In this work, we explored the feasibility of element analysis of Aurelia aurita (a representative Scyphozoan jellyfish outbreak species in China) which may be used as proxies of environment parameters during jellyfish living and moving. Statolith crystals of Aurelia aurita were found to be a gathering of hexahedron type trigonal needle with size of 10−50 μm long, and 5−10 μm in diameter. By using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) downhole profiling method, elements such as Ca, Sr, Mg, Na and P were found to be above the limit of detection and limit of quantification. The epidermis of statocyst could significantly impact the element analyses, so the real statolith element signal section needs to be selected based on elements and Ca profiles together with care. By laser ablated a signal spot repeatedly, the analytical uncertainty was about 3%−4% for Sr/Ca content ratio and Mg/Ca content ratio, but above 10% for other element/Ca content ratios (n=3). Based on the analysis of statolith from temperature-control cultured jellyfish, Sr/Ca content ratios among different statoliths of the same jellyfish were about 6% (n=14), demonstrating biological processes/vital effects causing small variations compared with analytical uncertainties. Therefore, Sr/Ca content ratios may be used as a potential proxy to reveal the living environment variations the Scyphozoan jellyfish has experienced, such as temperature history, which is helpful to understand jellyfish bloom mechanisms.
  • loading
  • Arkhipkin A I, Campana S E, FitzGerald J, et al. 2004. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Canadian Journal of Fisheries and Aquatic Sciences, 61(7): 1212–1224. doi: 10.1139/f04-075
    Becker A, Sötje I, Paulmann C, et al. 2005. Calcium sulfate hemihydrate is the inorganic mineral in statoliths of Scyphozoan medusae (Cnidaria). Dalton Transactions, (8): 1545–1550. doi: 10.1039/B416246C
    Bosch-Belmar M, Azzurro E, Pulis K, et al. 2017. Jellyfish blooms perception in Mediterranean finfish aquaculture. Marine Policy, 76: 1–7. doi: 10.1016/j.marpol.2016.11.005
    Brodeur R D, Mills C E, Overland J E, et al. 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fisheries Oceanography, 8(4): 296–306. doi: 10.1046/j.1365-2419.1999.00115.x
    Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188: 263–297. doi: 10.3354/meps188263
    Condon R H, Steinberg D K. 2008. Development, biological regulation, and fate of ctenophore blooms in the York River estuary, Chesapeake Bay. Marine Ecology Progress Series, 369: 153–168. doi: 10.3354/meps07595
    Ding Fengyuan, Cheng Jiahua. 2007. Dynamic distribution of Stomolophus meleagris in the East China Sea Region. Journal of Fishery Sciences of China, 14(1): 83–89
    Dong Zhijun, Liu Dongyan, Keesing J K. 2010. Jellyfish blooms in China: dominant species, causes and consequences. Marine Pollution Bulletin, 60(7): 954–963. doi: 10.1016/j.marpolbul.2010.04.022
    Foster T, Falter J L, McCulloch M T, et al. 2016. Ocean acidification causes structural deformities in juvenile coral skeletons. Science Advances, 2(2): e1501130. doi: 10.1126/sciadv.1501130
    Freitas P S, Clarke L J, Kennedy H, et al. 2006. Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochimica et Cosmochimica Acta, 70(20): 5119–5133. doi: 10.1016/j.gca.2006.07.029
    Gillanders B M. 2005. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources, 18(3): 291–300. doi: 10.1051/alr:2005033
    Gillanders B M, Kingsford M J. 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series, 141(1–3): 13–20
    Gonzalvo S, Kawakami T, Tanoue H, et al. 2021. Estuarine dependency of Lates japonicus in Shimanto Estuary, Japan, inferred from otolith Sr: Ca. Estuarine, Coastal and Shelf Science, 252: 107269
    Graham W M. 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia, 451(1–3): 97–111
    Guo Xiaoyi, Xu Bochao, Burnett C W, et al. 2019. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary. Geochimica et Cosmochimica Acta, 245: 290–303
    Holst S, Sötje I, Tiemann H, et al. 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology, 151(5): 1695–1710. doi: 10.1007/s00227-006-0594-8
    Hopf J K, Kingsford M J. 2013. The utility of statoliths and bell size to elucidate age and condition of a scyphomedusa (Cassiopea sp. ). Marine Biology, 160(4): 951–960. doi: 10.1007/s00227-012-2146-8
    Kingsford M J, Seymour J E, O’Callaghan M D. 2012. Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia, 690(1): 257–268. doi: 10.1007/s10750-012-1041-0
    Lotan A, Fine M, Ben-Hillel R. 1994. Synchronization of the life cycle and dispersal pattern of the tropical invader scyphomedusan Rhopilema nomadica is temperature dependent. Marine Ecology Progress Series, 109: 59–65. doi: 10.3354/meps109059
    Markl H. 1978. Adaptive radiation of mechanoreception. In: Ali M A, ed. Sensory Ecology. Boston: Springer, 319–344
    Martin G B, Thorrold S R, Jones C M. 2004. Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences, 61(1): 34–42. doi: 10.1139/f03-143
    Mooney C J, Kingsford M J. 2012. Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry. Hydrobiologia, 690(1): 269–277. doi: 10.1007/s10750-012-1049-5
    Mooney C J, Kingsford M J. 2016. The influence of salinity on box jellyfish (Chironex fleckeri, Cubozoa) statolith elemental chemistry. Marine Biology, 163(5): 103. doi: 10.1007/s00227-016-2867-1
    Morrissey S J, Schlaefer J A, Kingsford M J. 2020. Experimental validation of the relationships between cubozoan statolith elemental chemistry and salinity and temperature. Journal of Experimental Marine Biology and Ecology, 527: 151375. doi: 10.1016/j.jembe.2020.151375
    Petersen J, Barras C, Bézos A, et al. 2018. Mn/Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida. Biogeosciences, 15(1): 331–348. doi: 10.5194/bg-15-331-2018
    Purcell J E. 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom, 85(3): 461–476. doi: 10.1017/S0025315405011409
    Purcell J E. 2009. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia, 616(1): 23–50. doi: 10.1007/s10750-008-9585-8
    Richardson A J, Bakun A, Hays G C, et al. 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6): 312–322
    Secor D H, Rooker J R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes?. Fisheries Research, 46(1–3): 359–371
    Shen Jianzhong, Cao Wenxuan, Cui Yibo, et al. 2002. The relationship between otolith-weight and age with reference to its use in age determination for Carassius auratus. Acta Hydrobiologica Sinica, 26(6): 662–668
    Sun Xue. 2019. Study on sources and trajectories of giant jellyfish in coastal waters nearby Hongyanhe Power Plant (in Chinese)[dissertation]. Tianjin: Tianjin University
    Sun Song, Yu Zhigang, Li Chaolun, et al. 2012. Progress in the jellyfish bloom research in the Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica, 43(3): 401–405
    Sötje I, Dishon T, Hoffmann F, et al. 2017. New methods of morphometric analyses on Scyphozoan jellyfish statoliths including the first direct evidence for statolith growth using calcein as a fluorescent marker. Microscopy and Microanalysis, 23(3): 553–568. doi: 10.1017/S1431927617000344
    Sötje I, Neues F, Epple M, et al. 2011. Comparison of the statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Marine Biology, 158(5): 1149–1161. doi: 10.1007/s00227-011-1637-3
    Takesue R K, Van Geen A. 2004. Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochimica et Cosmochimica Acta, 68(19): 3845–3861. doi: 10.1016/j.gca.2004.03.021
    Tiemann H, Sötje I, Jarms G, et al. 2002. Calcium sulfate hemihydrate in statoliths of deep-sea medusae. Journal of the Chemical Society, Dalton Transactions, (7): 1266–1268
    Ueno S, Imai C, Mitsutani A. 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. Journal of Plankton Research, 17(6): 1381–1384. doi: 10.1093/plankt/17.6.1381
    Uye S, Ueta U. 2004. Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bulletin of the Japanese Society of Fisheries Oceanography, 68(1): 9–19
    Wang Bin, Li Yulong, Shen Hong, et al. 2014. Quantity distribution of Cyanea nokazii in inshore waters of northern Liaodong Bay, Bohai Sea in 2005–2013. Marine Fisheries, 36(2): 146–154
    Zhang Fang, Sun Song, Jin Xianshi, et al. 2012. Associations of large jellyfish distributions with temperature and salinity in the Yellow Sea and East China Sea. Hydrobiologia, 690(1): 81–96. doi: 10.1007/s10750-012-1057-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (164) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return