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 S.1 The Rossby adjustment of a homogeneous fluid 

Consider a homogeneous ocean of constant depth H. At time 0t , there is a 

uniform current jet (width of 2b) of speed U0 into the page. The initial solution is 

denoted in upper case characters, (Y, U); the solution after adjustment in the new 

coordinates is denoted in lower case characters, (y, u). The x-momentum equation and its 

time integration lead to 

/du dt fv , 
 u U f y Y  

.                                                   (S1) 

The continuity condition is,  

/h HdY dy .                                                                            (S2) 

The final state is in geostrophy 

g dh
u

f dy
 

.                                               (S3) 

A single equation for Y is 

2

2 2 2 2

d Y Y y U

dy f  
   

,                                                      (S4) 

where /  gH f  is the Rossby radius of deformation. The solution is found by 

matching three pieces of solution over two locations as shown in Fig. S1.  

The total kinetic energy and surface potential energy in the initial state are 
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In the final state the total kinetic energy in these three regions are 
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The total surface potential energy in these three regions is 

 
2

2 / 2 / 2 /0 0
,1 4 /

8

b b b

II

HU
e e e b   

    
,                       (S9) 

 
2

2 2 /0 0
,1 ,1 sinh /

4

b

I III

HU
b e  

    
 .                      (S10) 

Thus, the total kinetic energy in region I and III is 
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Accordingly, energy in the final state is equally participant between the kinetic energy 

and the surface potential energy. 

The total surface potential in the final state is 
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The total energy after adjustment is 
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When / 1b , the asymptotic solution is 
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Thus, the velocity field is basically unchanged.  
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Hence, in the final state the energy is mostly retained in region II and in the form of 

kinetic energy associated with the geostrophically balanced velocity, while the potential 

energy associated with the pressure field consists of a very small portion. The energy 

dispersed to the originally rest part of the ocean is quite small. 

If / 1 b , the approximate solution is in the following forms 

  /

00 0bu U e  
;                                                  (S19a) 

    0 / 2u b u b U    
;                      (S19b) 

    0 / 2u b u b U   
.                                 (S19c) 

Away from these two pivotal points, the final velocity is practically zero. Thus, if the 

initial velocity jet is much wider than the deformation radius, the velocity field is totally 

destroyed. 

The total energy in this case is 
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Thus, most of the energy originally stored in the form of kinetic energy is dissipated 

during the process of geostrophic adjustment. According to the classical theory of 

geostrophic adjustment, the gravity waves play a vitally important role. For a model 

ocean sitting on an infinite f-plane, most of the original energy is lost to the infinity 

through gravity wave radiation during the adjustment.  

S.2 The adjustment with an initial finite step in free surface 

The second case is with an initially single step-like perturbation in sea surface for an 

ocean at rest, Fig. S2. The solution in these two regions are 
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,                                      (S21) 

where   /  I g H H f  and / II gH f  are the deformation radius for domain I 

and II.  

The total kinetic energy in these two regions is 
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Thus, the total loss in potential energy is 
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The total gain in kinetic energy is 
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Since the initial state has a scale much larger than the radius of deformation, the pressure 

field is mostly retained, except near the front, and most energy associated with the initial 

pressure perturbation is retained. After the adjustment, the geostrophic velocity field is 

established. There is about 1/3 of the surface potential energy is dispersed to infinite 

through gravity wave radiation during the adjustment. 

S.3 The adjustment with an initial finite step of finite width in free 

surface 

The case with an initial step-like perturbation of free surface elevation is of great 

interest. The model domain can be separated into three sub-regions, as shown in Fig. S3. 

The solutions in these domains are  
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,  

/ /
,

 
  II IIy y

IIY y Be Ce
/ Iy

IIIY y De 
 

,            (S26) 

where 
/I gH f 

and
  /II g H H f   

are the deformation radius for domain I 

and II. 

The layer thickness is 

 / , 1 / , /I I II II III IIIh HdY dy h H dY dy h HdY dy   
,             (S27) 

where / 1H H   in general. The constants A, B, C and D are determined by 

matching boundary conditions. 

In domain II, potential energy before and after adjustment is 
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For domain I 
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When ,  I IIb , 
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The total potential energy change in region I and III is 

      2 2

,1 ,1 ,0 ,0 ,1 ,0 02 2I III I III I I If H b             
 .             (S32) 

Equations (S31) and (S32) show that the potential energy loss in region II is mostly 

converted into potential energy gain in region I and III. This potential energy transport 

between region II and regions I/III indicates that there is little energy conversion from the 

potential energy into kinetic energy for the limit of   IIb . 

The kinetic energy for domain I is 
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For domain II, it is 
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When ,  I IIb , 
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Since 
2 2

,0 ,1 02     II II If H b , kinetic energy gain in region II is much smaller than 

that converted to the kinetic energy in this region. 

When the width of the initial step in free surface is much larger than the deformation 

radius, change in the free surface elevation is mostly confined to the vicinity of the initial 

front with the order of deformation radius.   

S.4 On the relation between APE and ASPE in a 12
2
 layer 

ocean 

Assuming hydrostatic approximation and the second layer is very thick and 

motionless, there is a simple relation 

0 1h     
.                                  (S38) 

As shown in Fig. S4b, in the physical state, there is a light water upper layer and a 

slightly dense lower layer occupying the water column. The mean thickness of these two 

layers are 10h  and 20h . The interface between the upper and lower layers is slanted, and 

the depth change over the width of the water column is 2H. Assuming the second layer is 

stagnant, thus the free surface elevation has a slope opposite of that of the interface, and 

the corresponding change of sea level across the width of the water column is 2N. 

According to Eq. (S38), there is a simple relation between N and H 

0N H  
.                                                (S39) 

The thickness of the first and second layer is 
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The total amount of gravitational potential energy of layer 2 is 
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Thus, the total gravitational potential energy of the upper layer is 
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After manipulating, this leads to  
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where, 
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are the baroclinic APE and the ASPE. In general, 0/ 0.001 0.003   ; thus, ASPE is 

much smaller than APE.  

The corresponding geostrophic velocity is '2 /u g H fb ; thus, the total kinetic 

energy for the upper layer is 
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The ratio of APE vs KE is 
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If the width of the original jet is much larger than the deformation radius, the APE is 

much larger than kinetic energy. 

 

 

Figures 

  

Fig. S1. The Rossby problem for a homogeneous ocean with an initial velocity jet 

(looking toward the east). 
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Fig. S2. Geostrophic adjustment induced by an initial step in sea surface elevation. 

  

Fig. S3.  Adjustment of an initial step of finite width of free surface elevation. 

 

Fig. S4.  Sketch of the model ocean. 
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S.5 Supplementary Figs of ASPE and surface KE based on a 7.5 km-

resolution ROMS simulation data 

 
Fig. S5. The Northwest Pacific SSH in the scale of <20 km (roughly following a 3-point 

scheme), July 15, 2003, based on the converted ROMS data. 

 

 

Fig. S6. The Northwest Pacific ASPE in the scale of <20 km, July 15, 2003, based on the 

converted ROMS data. 
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 Fig. S7. The Northwest Pacific surface KE in the scale of <20 km, July 15, 2003, based 

on the converted ROMS data. 
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Fig. S8. Normalized seasonal cycle of ASPE, EKEBT, EKEBC and zonal wind stress in the 

scale of <20 km over the Kuroshio extension region, based on the converted ROMS data. 

The correlation coefficients between the ASPE and two EKE components (EKEBT, 

EKEBC) are 0.94 and 0.92, separately. 

 

 

Fig. S9. Normalized seasonal cycle of ASPE, EKEBT, EKEBC and zonal wind stress in the 

scale of <20 km over the STCC region, based on the converted ROMS data. The 

correlation coefficients between the ASPE and two EKE components (EKEBT, EKEBC) 

are 0.81 and 0.86, separately. 
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Fig. S10. The Northwest Pacific SSH in the scale of >50 km (roughly following a 7-point 

scheme), July 15, 2003, based on the converted ROMS data. 

 

Fig. S11. The Northwest Pacific ASPE in the scale of >50 km, July 15, 2003, based on 

the converted ROMS data. 
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Fig. S12. The Northwest Pacific surface KE in the scale of >50 km, July 15, 2003, based 

on the converted ROMS data. 
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Fig. S13. Normalized seasonal cycle of ASPE, EKEBT, EKEBC and zonal wind stress in 

the scale of >50 km over the Kuroshio extension region, based on the converted ROMS 

data. The correlation coefficients between the ASPE and two EKE components (EKEBT, 

EKEBC) are 0.28 and 0.71, separately. 

 

 

Fig. S14. Normalized seasonal cycle of ASPE, EKEBT, EKEBC and zonal wind stress in 

the scale of >50 km over the STCC region, based on the converted ROMS data. The 

correlation coefficients between the ASPE and two EKE components (EKEBT, EKEBC) 

are 0.40 and 0.78, separately. 


