Volume 41 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
Arghavan Hosseinpouri, Mehdi Mohammadi, Elham Ehsandoost, Paria Sharafi-Badr, Narges Obeidi. Chemical identification, antioxidant, cholinesterase inhibitory, and cytotoxic properties of fucoidan extracted from Persian Gulf Sargassum angustifolium[J]. Acta Oceanologica Sinica, 2022, 41(12): 133-141. doi: 10.1007/s13131-021-1961-5
Citation: Arghavan Hosseinpouri, Mehdi Mohammadi, Elham Ehsandoost, Paria Sharafi-Badr, Narges Obeidi. Chemical identification, antioxidant, cholinesterase inhibitory, and cytotoxic properties of fucoidan extracted from Persian Gulf Sargassum angustifolium[J]. Acta Oceanologica Sinica, 2022, 41(12): 133-141. doi: 10.1007/s13131-021-1961-5

Chemical identification, antioxidant, cholinesterase inhibitory, and cytotoxic properties of fucoidan extracted from Persian Gulf Sargassum angustifolium

doi: 10.1007/s13131-021-1961-5
Funds:  The Iran National Science Foundation under contract No. 96015033.
More Information
  • Corresponding author: E-mail: mohammadim@pgu.ac.ir
  • Received Date: 2020-08-24
  • Accepted Date: 2021-11-18
  • Available Online: 2022-08-30
  • Publish Date: 2022-12-30
  • Marine macroalgal sulfated fucose-containing polysaccharides, like fucoidan, have drawn significant attention due to their biotechnological potentials, such as anti-cancer, antioxidant, and anti-cholinesterase activities. The fucoidan derived from brown macroalgae Sargassum angustifolium species (FSA) was investigated for its cytotoxic effects and alterations in cell proliferation, and cell cycle-related gene expression in the present study occurred on NB4 cell line. The results showed that FSA would induce p53, p21, pro-apoptotic genes and increase expression of the p15 gene as a cell arrest marker. Also, FSA inhibited the anti-apoptotic effect of the Bcl-2 gene and decreased dnmt-1 gene expression. FSA significantly exhibited potent 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (p<0.05) with an IC50 value of 0.157 mg/mL and showed moderate anti-acetylcholinesterase activity with an IC50 value of 1.20 μg/mL. These results indicated the potential of FSA for the development of therapeutic or preventive agents of cancer and Alzheimer’s disease mainly through cytotoxic effect and AChE (acetylcholinesterase) inhibition as well as additional antioxidant capacities.
  • loading
  • Adams J, Nassiri M. 2015. Acute promyelocytic leukemia: a review and discussion of variant translocations. Archives of Pathology & Laboratory Medicine, 139(10): 1308–1313
    Adhami H R, Farsam H, Krenn L. 2011. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytotherapy Research, 25(8): 1148–1152. doi: 10.1002/ptr.3409
    Ahmady-Asbchin S, Mohammadi M. 2011. Biosorption of copper ions by marine brown alga Fucus vesiculosus. Journal of Biological and Environmental Sciences, 5(15): 121–127
    Atashrazm F, Lowenthal R M, Woods G M, et al. 2015. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Marine Drugs, 13(4): 2327–2346. doi: 10.3390/md13042327
    Bahramzadeh S, Tabarsa M, You S G, et al. 2019. Purification, structural analysis and mechanism of murine macrophage cell activation by sulfated polysaccharides from Cystoseira indica. Carbohydrate Polymers, 205: 261–270. doi: 10.1016/j.carbpol.2018.10.022
    Barbui T, Finazzi G, Falanga A. 1998. The impact of all-trans-retinoic acid on the coagulopathy of acute promyelocytic leukemia. Blood, 91(9): 3093–3102. doi: 10.1182/blood.V91.9.3093
    Benslima A, Sellimi S, Hamdi M, et al. 2021. Brown seaweed Cystoseira schiffneri as a promising source of sulfated fucans: seasonal variability of structural, chemical, and antioxidant properties. Food Science & Nutrition, 9(3): 1551–1563
    Bernard J, Weil M, Boiron M, et al. 1973. Acute promyelocytic leukemia: results of treatment by daunorubicin. Blood, 41(4): 489–496. doi: 10.1182/blood.V41.4.489.489
    Bolognesi M L, Matera R, Minarini A, et al. 2009. Alzheimer’s disease: new approaches to drug discovery. Current Opinion in Chemical Biology, 13(3): 303–308. doi: 10.1016/j.cbpa.2009.04.619
    Boo H J, Hong J Y, Kim S C, et al. 2013. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Marine Drugs, 11(8): 2982–2999. doi: 10.3390/md11082982
    Borazjani N J, Tabarsa M, You S G, et al. 2018. Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules, 109: 793–802. doi: 10.1016/j.ijbiomac.2017.11.059
    Carpinella M C, Andrione D G, Ruiz G, et al. 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytotherapy Research, 24(2): 259–263. doi: 10.1002/ptr.2923
    Castaigne S, Chomienne C, Daniel M T, et al. 1990. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. clinical results. Blood, 76(9): 1704–1709. doi: 10.1182/blood.V76.9.1704.1704
    Chen Zixing, Xue Yongquan, Zhang Ri, et al. 1991. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood, 78(6): 1413–1419. doi: 10.1182/blood.V78.6.1413.1413
    Choi B W, Ryu G, Park S H, et al. 2007. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s disease therapy. Phytotherapy Research, 21(5): 423–426. doi: 10.1002/ptr.2090
    Choo G S, Lee H N, Shin S A, et al. 2016. Anticancer effect of fucoidan on DU-145 prostate cancer cells through inhibition of PI3K/Akt and MAPK pathway expression. Marine Drugs, 14(7): 126. doi: 10.3390/md14070126
    Degos L, Chomienne C, Daniel M T, et al. 1990. Treatment of first relapse in acute promyelocytic leukaemia with all-trans retinoic acid. Lancet, 336(8728): 1440–1441
    Devi L B, Das S K, Mandal A B. 2014. Impact of surface functionalization of AgNPs on binding and conformational change of hemoglobin (Hb) and hemolytic behavior. The Journal of Physical Chemistry C, 118(51): 29739–29749. doi: 10.1021/jp5075048
    Ellman G L, Courtney K D, Andres Jr V, et al. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2): 88–90, IN1, 91–95
    Farvin K H S, Jacobsen C. 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2–3): 1670–1681
    Fenaux P, Chastang C, Chevret S, et al. 1999. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood, 94(4): 1192–2000. doi: 10.1182/blood.V94.4.1192
    Fitton J H, Stringer D N, Karpiniec S S. 2015. Therapies from fucoidan: an update. Marine Drugs, 13(9): 5920–5946. doi: 10.3390/md13095920
    Frankel S R, Eardley A, Lauwers G, et al. 1992. The “retinoic acid syndrome” in acute promyelocytic leukemia. Annals of Internal Medicine, 117(4): 292–296. doi: 10.7326/0003-4819-117-4-292
    Gao Yonglin, Li Chunmei, Yin Jungang, et al. 2012. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environmental Toxicology and Pharmacology, 33(2): 304–311. doi: 10.1016/j.etap.2011.12.022
    Grimwade D, Biondi A, Mozziconacci M J, et al. 2000. Characterization of acute promyelocytic leukemia cases lacking the classic t (15; 17): results of the European Working Party. Blood, 96(4): 1297–1308
    Harvey A L. 2008. Natural products in drug discovery. Drug Discovery Today, 13(19–20): 894–901
    Hodges J R. 2006. Alzheimer’s centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain, 129(11): 2811–2822. doi: 10.1093/brain/awl275
    Hu Pei, Li Zhixiong, Chen Mingcang, et al. 2016. Structural elucidation and protective role of a polysaccharide from Sargassum fusiforme on ameliorating learning and memory deficiencies in mice. Carbohydrate Polymers, 139: 150–158. doi: 10.1016/j.carbpol.2015.12.019
    Irhimeh M R, Fitton J H, Lowenthal R M. 2007. Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Experimental Hematology, 35(6): 989–994. doi: 10.1016/j.exphem.2007.02.009
    Jenny M, Klieber M, Zaknun D, et al. 2011. In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflammation Research, 60(2): 127–135. doi: 10.1007/s00011-010-0244-y
    Jin J O, Song M G, Kim Y N, et al. 2010. The mechanism of fucoidan-induced apoptosis in leukemic cells: involvement of ERK1/2, JNK, glutathione, and nitric oxide. Molecular Carcinogenesis, 49(8): 771–782
    Kakizuka A, Miller Jr W H, Umesono K, et al. 1991. Chromosomal translocation t (1.5; 17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell, 66(4): 663–674. doi: 10.1016/0092-8674(91)90112-C
    Kandasamy S, Khan W, Kulshreshtha G, et al. 2015. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L. ) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae, 30(2): 147–161
    Lindsley R C, Mar B G, Mazzola E, et al. 2015. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood, 125(9): 1367–1376. doi: 10.1182/blood-2014-11-610543
    Martins A, Vieira H, Gaspar H, et al. 2014. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine Drugs, 12(2): 1066–1101. doi: 10.3390/md12021066
    Molinski T F, Dalisay D S, Lievens S L, et al. 2009. Drug development from marine natural products. Nature Reviews Drug Discovery, 8(1): 69–85. doi: 10.1038/nrd2487
    Mukherjee P K, Kumar V, Houghton P J. 2007. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytotherapy Research, 21(12): 1142–1145. doi: 10.1002/ptr.2224
    Nagamine T, Hayakawa K, Kusakabe T, et al. 2009. Inhibitory effect of fucoidan on Huh7 hepatoma cells through downregulation of CXCL12. Nutrition and Cancer, 61(3): 340–347. doi: 10.1080/01635580802567133
    Natarajan S, Shanmugiahthevar K P, Kasi P D. 2009. Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Natural Product Research, 23(4): 355–369. doi: 10.1080/14786410802156036
    Nauseef W M. 2014. Isolation of human neutrophils from venous blood. In: Quinn M T, DeLeo F R, eds. Neutrophil Methods and Protocols. Totowa: Humana Press, 13–18
    Palanisamy S, Vinosha M, Marudhupandi T, et al. 2017. Isolation of fucoidan from Sargassum polycystum brown algae: structural characterization, in vitro antioxidant and anticancer activity. International Journal of Biological Macromolecules, 102: 405–412. doi: 10.1016/j.ijbiomac.2017.03.182
    Park H Y, Choi I W, Kim G Y, et al. 2015. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. Revista Brasileira de Farmacognosia, 25(3): 246–251. doi: 10.1016/j.bjp.2015.03.011
    Park H S, Hwang H J, Kim G Y, et al. 2013. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Marine Drugs, 11(7): 2347–2364. doi: 10.3390/md11072347
    Ratcliffe N A, Mello C B, Garcia E S, et al. 2011. Insect natural products and processes: new treatments for human disease. Insect Biochemistry and Molecular Biology, 41(10): 747–769. doi: 10.1016/j.ibmb.2011.05.007
    Redner R L. 2002. Variations on a theme: the alternate translocations in APL. Leukemia, 16(10): 1927–1932. doi: 10.1038/sj.leu.2402720
    Saitoh Y, Nagai Y, Miwa N. 2009. Fucoidan-Vitamin C complex suppresses tumor invasion through the basement membrane, with scarce injuries to normal or tumor cells, via decreases in oxidative stress and matrix metalloproteinases. International Journal of Oncology, 35(5): 1183–1189
    Sellimi S, Kadri N, Barragan-Montero V, et al. 2014. Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity. International Journal of Biological Macromolecules, 66: 281–288. doi: 10.1016/j.ijbiomac.2014.02.041
    Shen Zhixiang, Shi Zhanzhong, Fang Jing, et al. 2004. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 101(15): 5328–5335. doi: 10.1073/pnas.0400053101
    Sobin L H, Fleming I D. 1997. TNM classification of malignant tumors, fifth edition (1997). Union internationale contre le cancer and the American joint committee on cancer. Cancer, 80(9): 1803–1804. doi: 10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9
    Sohrabipour J, Rabiei R. 1999. A list of marine algae of seashores of Persian Gulf and Oman Sea in the Hormozgan Province. Iranian Journal of Botany, 8(1): 131–162
    Sohrabipour J, Rabiei R. 2007. The checklist of green algae of the Iranian coastal lines of the Persian Gulf and Gulf of Oman. The Iranian Journal of Botany, 13(2): 146–149
    Vaziri Zadeh A, Mohammadi M, Fakhri A. 2012. Ecological assessment of mollusc communities in the rocky shores of Bushehr Province. Journal of Oceanography, 3(9): 55–61
    Veena C K, Josephine A, Preetha S, et al. 2007. Effect of sulphated polysaccharides on erythrocyte changes due to oxidative and nitrosative stress in experimental hyperoxaluria. Human & Experimental Toxicology, 26(12): 923–932
    Wang Yu, Xing Maochen, Cao Qi, et al. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Marine Drugs, 17(3): 183. doi: 10.3390/md17030183
    Warrell Jr R P, Frankel S R, Miller Jr W H, et al. 1991. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England Journal of Medicine, 324(20): 1385–1393. doi: 10.1056/NEJM199105163242002
    Warrell Jr R P, Maslak P, Eardley A, et al. 1994. Treatment of acute promyelocytic leukemia with all-trans retinoic acid: an update of the New York experience. Leukemia, 8(6): 929–933
    Wei Chunmei, Xiao Qing, Kuang Xingyi, et al. 2015. Fucoidan inhibits proliferation of the SKM-1 acute myeloid leukaemia cell line via the activation of apoptotic pathways and production of reactive oxygen species. Molecular Medicine Reports, 12(5): 6649–6655. doi: 10.3892/mmr.2015.4252
    Wong K K, Lawrie C H, Green T M. 2019. Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia. Biomarker Insights, 14: 1–12. doi: 10.1177/1177271919846454
    Yamaguchi T, Takamura H, Matoba T, et al. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62(6): 1201–1204
    Yan Mingde, Yao C J, Chow J M, et al. 2015. Fucoidan elevates microRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Marine Drugs, 13(10): 6099–6116. doi: 10.3390/md13106099
    Yang Meixiang, Ma Chunhong, Sun Jintang, et al. 2008. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. International Immunopharmacology, 8(13–14): 1754–1760
    Yende S R, Harle U N, Chaugule B B. 2014. Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Review, 8(15): 1–7. doi: 10.4103/0973-7847.125514
    Yuan Xiumei, Zeng Yawei, Nie Kaiying, et al. 2015. Extraction optimization, characterization and bioactivities of a major polysaccharide from Sargassum thunbergii. PLoS ONE, 10(12): e0144773. doi: 10.1371/journal.pone.0144773
    Zhang Zhongyuan, Teruya K, Eto H, et al. 2011. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS ONE, 6(11): e27441. doi: 10.1371/journal.pone.0027441
    Zhang Qingyu, Wang Feixuan, Jia Keke, et al. 2018. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Frontiers in Pharmacology, 9: 1253. doi: 10.3389/fphar.2018.01253
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (439) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return