YANG Baoju, ZENG Zhigang, WANG Xiaoyuan, YIN Xuebo, CHEN Shuai. Pourbaix diagrams to decipher precipitation conditions of Si-Fe- Mn-oxyhydroxides at the PACMANUS hydrothermal field[J]. Acta Oceanologica Sinica, 2014, 33(12): 58-66. doi: 10.1007/s13131-014-0572-9
Citation: YANG Baoju, ZENG Zhigang, WANG Xiaoyuan, YIN Xuebo, CHEN Shuai. Pourbaix diagrams to decipher precipitation conditions of Si-Fe- Mn-oxyhydroxides at the PACMANUS hydrothermal field[J]. Acta Oceanologica Sinica, 2014, 33(12): 58-66. doi: 10.1007/s13131-014-0572-9

Pourbaix diagrams to decipher precipitation conditions of Si-Fe- Mn-oxyhydroxides at the PACMANUS hydrothermal field

doi: 10.1007/s13131-014-0572-9
  • Received Date: 2013-07-17
  • Rev Recd Date: 2014-03-26
  • Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn- H2O Pourbaix diagrams were constructed at 300℃ and 25℃. The Pourbaix diagrams show that the main Si, Fe and Mn oxides species precipitating from the hydrothermal fluid were SiO2, Fe(OH)3, Fe3(OH)8, Mn3O4, and Mn2O3 at 25℃. During mixing of hydrothermal fluid with seawater, SiO2 precipitated earlier than Fe- Mn-oxyhydroxides because of the lower stability boundary. Then Fe(OH)2 precipitated first, followed by Fe3(OH)8 and Fe(OH)3, and last, small amounts of Mn3O4 and Mn2O3 precipitated. Fe(OH)3 was readily deposited in alkaline solution with little influence by Eh. There were many Si-Fe-Mn-concentric particles in the polished sections of the massive precipitates collected from PACMANUS. In the concentric nucleus and ellipsoid, Si oxides precipitated first before the hydrothermal fluid had mixed with seawater. In the concentric nucleus, after the precipitation of Si oxides, the increase of pH and Eh promoted the precipitation of Mn oxides around the Si oxides. In the large ellipsoid, the precipitation of Fe was divided into two periods. In the early period, increase of pH value of hydrothermal fluid produced by low-temperature convection and an input of a small volume of seawater promoted a small amount of Fe(OH)3 to precipitate in the Si-rich core. In the late period, after complete mixing with seawater and the resultant fluid was close to neutral or slightly alkaline in pH, Fe(OH)3 was easily precipitated from the solution and distributed around the Si-rich core.
  • loading
  • Alt J C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar Geol, 81(1-4): 227-239
    Benjamin S B, Haymon R M. 2006. Hydrothermal mineral deposits and fossil biota from a young (0. 1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochemistry Geophysics Geosystems, 7(5): Q05002
    Beverskog B, Puigdomenech I. 1996. Revised Pourbaix diagrams for iron at 25-300℃. Corros Sci, 38(12): 2121-2135
    Binns R A, Scott S D. 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ Geol, 88(8): 2226-2236
    Binns R A, Scott S D, Bogdanov Y A, et al. 1993. Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Econ Geol, 88(8): 2122-2153
    Binns R A, Barriga F J A S, Miller D J. 2007. 1. Leg 193 Synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. Proceedings of the Ocean Drilling Program, Scientific Results, 193: 1-71
    Bogdanov Y A, Lisitzin A P, Binns R A, et al. 1997. Low-temperature hydrothermal deposits of Franklin Seamount, Woodlark Basin, Papua New Guinea. Mar Geol, 142(1-4): 99-117
    Bonatti E, Beyth M, Rydell H S, et al. 1972. Iron-manganese-barium deposit from the northern Afar Rift (Ethiopia). Econ Geol, 67(6): 717-730
    Boyd T D, Scott S D. 2001. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem T, 2(1): 45-56
    Cooper L H N. 1937. Oxidation-reduction potential in sea water. J Mar Biol Assoc UK, 22(1): 167-176
    Dekov V M, Petersen S, Garbe-Schonberg C D, et al. 2010. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33'S, Mid-Atlantic Ridge). Chem Geol, 278(3-4): 186-200
    Edwards K J, Glazer B, Rouxel O J, et al. 2011. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. The ISME Journal, 5(11): 1748- 1758
    Edwards K J, Rogers D R, Wirsen C O, et al. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-Proteobacteria from the deep sea. Appl Environ Microb, 69(5): 2906-2913
    Emerson D, Moyer C L. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microb, 68(6): 3085-3093
    Emerson D, Rentz J A, Lilburn T G, et al. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. Plos One, 2(8): e667
    Fortin D, Langley S. 2005. Formation and occurrence of biogenic ironrich minerals. Earth-Sci Rev, 72(1-2): 1-19
    Fourre E, Jean-Baptiste P, Charlou J L, et al. 2006. Helium isotopic composition of hydrothermal fluids from the Manus back-arc Basin, Papua New Guinea. Geochem J, 40(3): 245-252
    Halbach P D P. 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau, 75(1): 235-247
    Hein J R, Hsueh-Wen Y, Gunn S H, et al. 1994. Composition and origin of hydrothermal ironstones from central Pacific seamounts. Geochim Cosmochim Ac, 58(1): 179-189
    Hein J R, Koschinsky A, Halbach P, et al. 1997. Iron and manganese oxide mineralization in the Pacific. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 119(16): 123-138
    Hein J R, Schulz M S, Dunham R E, et al. 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J Geophys Res, 113(B8): B08S14
    Hekinian R, Hoffert M, Larque P, et al. 1993. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and east Pacific rise axial and offaxial regions. Economic Geology and the Bulletin of the Society of Economic Geologists, 88: 2099-2121
    Hrischeva E, Scott S D. 2007. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim Cosmochim Ac, 71(14): 3476-3497
    Iizasa K, Kawasaki K, Maeda K, et al. 1998. Hydrothermal sulfidebearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific. Mar Geol, 145(1-2): 1-21
    Karl D M, Brittain A M, Tilbrook B D. 1989. Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-Sea Research Part A: Oceanographic Research Papers, 36(11): 1655-1673
    Kennedy C B, Scott S D, Ferris F G. 2003. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast Pacific Ocean. Geomicrobiol J, 20(3): 199-214
    Kim E, Osseo-Asare K. 2012. Dissolution windows for hydrometallurgical purification of metallurgical-grade silicon to solar-grade silicon: Eh-pH diagrams for Fe silicides. Hydrometallurgy, 127-128: 178-186
    Lin Chuanxian, Bai Zhenghua, Zhang Zheru. 1985. Thermodynamic Data Handbook of Minerals and Related Compounds (in Chinese). Beijing: Science Press, 17 Little C T S, Glynn S E J, Mills R A. 2004. Four-hundred-and-ninetymillion-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol J, 21(6): 415-429
    Martinez F, Taylor B. 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2-4): 203-224
    Ponnamperuma F N, Loy T A, Tianco E M. 1969. Redox equilibria in flooded soils: II. The manganese oxide systems. Soil Sci, 108(1): 48-57
    Ponnamperuma F N, Tianco E M, Loy T. 1967. Redox equilibria in flooded soils: I. The iron hydroxide systems. Soil Sci, 103(6): 374-382
    Reeves E P, Seewald J S, Saccocia P, et al. 2011. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Ac, 75(4): 1088-1123
    Rimstidt J D, Cole D R. 1983. Geothermal mineralization: I. The mechanism of formation of the Beowawe, Nevada, siliceous sinter deposit. Am J Sci, 283(8): 861-875
    Sadiq M, Lindsay W L. 1979. Selection of standard free energies of formation for use in soil chemistry. Technical Bulletin/Colorado State University, Experiment Station, 134: 1-24
    Schwab A P, Lindsay W L. 1983. Effect of redox on the solubility and availability of iron. Soil Sci Soc Am J, 47: 201-205
    Silver G L. 1991. Environmental plutonium: What is the redox potential of seawater? J Radioanal Nucl Ch, 155(3): 177-181
    Sinton J M, Ford L L, Chappell B, et al. 2003. Magma genesis and mantle heterogeneity in the Manus Back-Arc Basin, Papua New Guinea. J Petrol, 44(1): 159-195
    Sun Zhilei, Zhou Huaiyang, Glasby G P, et al. 2012. Formation of Fe- Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. J Asian Earth Sci, 43(1): 64-76
    Takahashi Y, Manceau A, Geoffroy N, et al. 2007. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim Cosmochim Ac, 71(4): 984-1008
    Taylor B. 1979. Bismarck Sea: Evolution of a back-arc basin. Geology, 7(4): 171-174
    Tregoning P. 2002. Plate kinematics in the western Pacific derived from geodetic observations. Journal of Geophysical Research: Solid Earth, 107(B1): ECV 7-1-ECV 7-8
    Wang Yuan, Chai Ruitao, Li Nan, et al. 2009. Synthesis of birnessite. Journal of Jilin University (Science Edition) (in Chinese), 47(3): 614-617
    White D E, Brannock W W, Murata K J. 1956. Silica in hot-spring waters. Geochim Cosmochim Ac, 10(1-2): 27-59
    Zeng Zhigang, Ouyang Hegen, Yin Xuebo, et al. 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: mineralogical and geochemical evidence. J Asian Earth Sci, 60: 130-146
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1667) PDF downloads(3308) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint