Volume 39 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Shujin Guo, Jun Sun. Concentrations and sinking rates of transparent exopolymer particles (TEPs) in a coastal sea: the Changjiang River (Yangtze River) Estuary[J]. Acta Oceanologica Sinica, 2020, 39(10): 58-69. doi: 10.1007/s13131-020-1660-7
Citation: Shujin Guo, Jun Sun. Concentrations and sinking rates of transparent exopolymer particles (TEPs) in a coastal sea: the Changjiang River (Yangtze River) Estuary[J]. Acta Oceanologica Sinica, 2020, 39(10): 58-69. doi: 10.1007/s13131-020-1660-7

Concentrations and sinking rates of transparent exopolymer particles (TEPs) in a coastal sea: the Changjiang River (Yangtze River) Estuary

doi: 10.1007/s13131-020-1660-7
Funds:  The National Key Research and Development Project of China under contract No. 2019YFC1407805; the National Natural Science Foundation of China under contract Nos 41876134, 91751202, 31700425, 41676112 and 41276124; the Tianjin 131 Innovation Team Program under contract No. 20180314; the Changjiang Scholar Program of Chinese Ministry of Education (T2014253) to Jun Sun.
More Information
  • Corresponding author: E-mail: phytoplankton@163.com
  • Received Date: 2019-10-16
  • Accepted Date: 2019-11-14
  • Available Online: 2020-12-28
  • Publish Date: 2020-10-25
  • Transparent exopolymer particles (TEPs) are ubiquitous throughout the oceans, and their sedimentation is considered an efficient biological carbon sink pathway. To investigate the role of coastal TEPs in sinking carbon from the upper layer, samples were collected in the spring and summer of 2011 in the Changjiang River (Yangtze River) Estuary, a typical coastal water. The concentrations and sinking rates of TEPs were measured, and potential sedimentation flux of TEPs was estimated. TEPs concentrations ranged from 40.00 μg/L to 1 040.00 μg/L (mean=(209.70±240.93) μg/L) in spring and 56.67 μg/L to 1 423.33 μg/L (mean=(433.33±393.02) μg/L) in summer, and they were higher at bloom stations than at non-bloom stations during both cruises. A significant positive correlation between TEPs concentration and chlorophyll a (Chl a) concentration was detected, suggesting that phytoplankton was the primary source of TEPs in this area. TEPs sinking rates ranged from 0.08 m/d to 0.57 m/d with a mean of (0.28±0.14) m/d in spring and 0.10 m/d to 1.08 m/d with a mean of (0.34±0.31) m/d in summer. The potential sedimentation flux of TEP-C ranged from 4.95 mg/(m2·d) to 29.40 mg/(m2·d) with a mean of (14.66±8.83) mg/(m2·d) in spring and 6.80 mg/(m2·d) to 30.45 mg/(m2·d) with a mean of (15.71±8.73) mg/(m2·d) in summer, which was ~17.81% to 138.27% (mean=65.15%±31.75%) of sedimentation flux of phytoplankton cells in the study area. Due to the increase of TEPs concentrations and their sinking rates, sedimentation fluxes of TEPs at the bloom station were obviously higher than at the non-bloom station during both cruises. This study indicates that TEPs serve as a carbon sink in the Changjiang River Estuary, especially during bloom events, and their sedimentation should be taken into account when we study the carbon sedimentation in the coastal sea.
  • loading
  • [1]
    Alldredge A L, Passow U, Haddock S H D. 1998. The characteristics and Transparent Exopolymer Particle (TEP) content of marine snow formed from thecate dinoflagellates. Journal of Plankton Research, 20(3): 393–406. doi: 10.1093/plankt/20.3.393
    [2]
    Alldredge A L, Passow U, Logan B E. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 40(6): 1131–1140. doi: 10.1016/0967-0637(93)90129-Q
    [3]
    Azetsu-Scott K, Passow U. 2004. Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean. Limnology and Oceanography, 49(3): 741–748. doi: 10.4319/lo.2004.49.3.0741
    [4]
    Bar-Zeev E, Berman T, Rahav E, et al. 2011. Transparent Exopolymer Particle (TEP) dynamics in the eastern Mediterranean Sea. Marine Ecology Progress Series, 431: 107–118. doi: 10.3354/meps09110
    [5]
    Bar-Zeev E, Berman-Frank I, Stambler N, et al. 2009. Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba. Aquatic Microbial Ecology, 56(2–3): 217–225
    [6]
    Bauer J E, Cai Weijun, Raymond P A, et al. 2013. The changing carbon cycle of the coastal ocean. Nature, 504(7478): 61–70. doi: 10.1038/nature12857
    [7]
    Beauvais S, Pedrotti M L, Villa E, et al. 2003. Transparent Exopolymer Particle (TEP) dynamics in relation to trophic and hydrological conditions in the NW Mediterranean Sea. Marine Ecology Progress Series, 262: 97–109. doi: 10.3354/meps262097
    [8]
    Berman T, Viner-Mozzini Y. 2001. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquatic Microbial Ecology, 24(3): 255–264
    [9]
    Bienfang P K. 1981. SETCOL-a technologically simple and reliable method for measuring phytoplankton sinking rates. Canadian Journal of Fisheries and Aquatic Sciences, 38(10): 1289–1294. doi: 10.1139/f81-173
    [10]
    Burd A B, Jackson G A. 2009. Particle aggregation. Annual Review of Marine Science, 1: 65–90. doi: 10.1146/annurev.marine.010908.163904
    [11]
    Cai Weijun. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?. Annual Review of Marine Science, 3(1): 123–145. doi: 10.1146/annurev-marine-120709-142723
    [12]
    Capblancq J. 1990. Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia, 207: 1–14. doi: 10.1007/BF00041435
    [13]
    Chang J, Shiah F K, Gong G C, et al. 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1237–1247. doi: 10.1016/S0967-0645(03)00020-1
    [14]
    Chen C T A, Borges A V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 578–590. doi: 10.1016/j.dsr2.2009.01.001
    [15]
    Chen Hongtao, Yu Zhigang, Yao Qingzheng, et al. 2010. Nutrient concentrations and fluxes in the Changjiang Estuary during summer. Acta Oceanologica Sinica, 29(2): 107–119. doi: 10.1007/s13131-010-0029-8
    [16]
    Cheng F, Song X, Yu Z, et al. 2012. Historical records of eutrophication in Changjiang (Yangtze) River estuary and its adjacent East China Sea. Biogeosciences Discussions, 9(6): 6261–6291. doi: 10.5194/bgd-9-6261-2012
    [17]
    Claquin P, Probert I, Lefebvre S, et al. 2008. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology, 51(1): 1–11
    [18]
    Corzo A, Rodríguez-Gálvez S, Lubian L, et al. 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait, Antarctica. Journal of Plankton Research, 27(7): 635–646. doi: 10.1093/plankt/fbi038
    [19]
    De Vicente I, Ortega-Retuerta E, Romera O, et al. 2009. Contribution of transparent exopolymer particles to carbon sinking flux in an oligotrophic reservoir. Biogeochemistry, 96(1–3): 13–23. doi: 10.1007/s10533-009-9342-8
    [20]
    Engel A. 2000. The role of Transparent Exopolymer Particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research, 22(3): 485–497. doi: 10.1093/plankt/22.3.485
    [21]
    Engel A. 2002. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24(1): 49–53. doi: 10.1093/plankt/24.1.49
    [22]
    Engel A. 2004. Distribution of Transparent Exopolymer Particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep Sea Research Part I: Oceanographic Research Papers, 51(1): 83–92. doi: 10.1016/j.dsr.2003.09.001
    [23]
    Engel A, Passow U. 2001. Carbon and nitrogen content of Transparent Exopolymer Particles (TEP) in relation to their Alcian Blue adsorption. Marine Ecology Progress Series, 219: 1–10. doi: 10.3354/meps219001
    [24]
    Eppley R W, Reid F M H, Strickland J D H. 1970. Estimates of phytoplankton crop size, growth rate and primary production. In: Strickland J D H, ed. The Ecology of the Plankton off La Jolla, California in the Period April through September 1967. Part III. California: Bulletin of the Scripps Institution of Oceanography of the University of California, 17: 33–42
    [25]
    Fukao T, Kimoto K, Kotani Y. 2012. Effect of temperature on cell growth and production of transparent exopolymer particles by the diatom Coscinodiscus granii isolated from marine mucilage. Journal of Applied Phycology, 24(2): 181–186. doi: 10.1007/s10811-011-9666-3
    [26]
    García C M, Prieto L, Vargas M, et al. 2002. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Peninsula). Journal of Plankton Research, 24(8): 817–833. doi: 10.1093/plankt/24.8.817
    [27]
    Guo Shujin, Feng Yuanyuan, Wang Lei, et al. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516: 103–126. doi: 10.3354/meps10952
    [28]
    Guo Shujin, Sun Jun, Wang Yu. 2019. Production and export of copepods fecal pellets in an eutrophic coastal sea: the Changjiang (Yangtze River) estuary. Estuarine, Coastal and Shelf Science, 218: 163–172. doi: 10.1016/j.ecss.2018.12.001
    [29]
    Guo Shujin, Sun Jun, Zhao Qibiao, et al. 2016. Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: a comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom. Journal of Marine Systems, 154: 5–14. doi: 10.1016/j.jmarsys.2015.07.003
    [30]
    Han M S, Wang Pengbin, Kim J H, et al. 2016. Morphological and molecular phylogenetic position of Prorocentrum micans sensu stricto and description of Prorocentrum koreanum sp. nov. from Southern Coastal Waters in Korea and Japan. Protist, 167(1): 32–50
    [31]
    Hong Ying, Smith Jr W O, White A M. 1997. Studies on Transparent Exopolymer Particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). Journal of Phycology, 33(3): 368–376. doi: 10.1111/j.0022-3646.1997.00368.x
    [32]
    Hung C C, Tseng C W, Gong G C, et al. 2013. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences, 10(10): 6469–6484. doi: 10.5194/bg-10-6469-2013
    [33]
    Ignacio P M. 2015. Exopolymer particles in the ocean: production by microorganisms, carbon export and mesopelagic respiration [dissertation]. Granada: Universidad de Granada
    [34]
    Iuculano F, Duarte C M, Marbà N, et al. 2017. Seagrass as major source of transparent exopolymer particles in the oligotrophic Mediterranean coast. Biogeosciences, 14(22): 5069–5075. doi: 10.5194/bg-14-5069-2017
    [35]
    Jackson G A, Burd A B. 1998. Aggregation in the marine environment. Environmental Science & Technology, 32(19): 2805–2814
    [36]
    Jennings M K, Passow U, Wozniak A S, et al. 2017. Distribution of Transparent Exopolymer Particles (TEP) across an organic carbon gradient in the western North Atlantic Ocean. Marine Chemistry, 190: 1–12. doi: 10.1016/j.marchem.2017.01.002
    [37]
    Klein C, Claquin P, Pannard A, et al. 2011. Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems. Marine Ecology Progress Series, 427: 13–27. doi: 10.3354/meps09049
    [38]
    Kodama T, Kurogi H, Okazaki M, et al. 2014. Vertical distribution of transparent exopolymer particle (TEP) concentration in the oligotrophic western tropical North Pacific. Marine Ecology Progress Series, 513: 29–37. doi: 10.3354/meps10954
    [39]
    Koeve W. 2005. Magnitude of excess carbon sequestration into the deep ocean and the possible role of TEP. Marine Ecology Progress Series, 291: 53–64. doi: 10.3354/meps291053
    [40]
    Liu Sumei, Li Ruihuan, Zhang Guiling, et al. 2011. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry, 125(1–4): 49–68. doi: 10.1016/j.marchem.2011.02.003
    [41]
    Liu Xin, Xiao Wupeng, Landry M R, et al. 2016. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems, 19(5): 832–849. doi: 10.1007/s10021-016-9970-5
    [42]
    Malpezzi M A, Sanford L P, Crump B C. 2013. Abundance and distribution of transparent exopolymer particles in the estuarine turbidity maximum of Chesapeake Bay. Marine Ecology Progress Series, 486: 23–35. doi: 10.3354/meps10362
    [43]
    Mari X. 1999. Carbon content and C: N ratio of Transparent Exopolymeric Particles (TEP) produced by bubbling exudates of diatoms. Marine Ecology Progress Series, 183: 59–71. doi: 10.3354/meps183059
    [44]
    Mari X. 2008. Does ocean acidification induce an upward flux of marine aggregates?. Biogeosciences Discussion, 5: 1631–1654. doi: 10.5194/bgd-5-1631-2008
    [45]
    Mari X, Burd A. 1998. Seasonal size spectra of Transparent Exopolymeric Particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Marine Ecology Progress Series, 163: 63–76. doi: 10.3354/meps163063
    [46]
    Mari X, Passow U, Migon C, et al. 2017. Transparent exopolymer particles: effects on carbon cycling in the ocean. Progress in Oceanography, 151: 13–37. doi: 10.1016/j.pocean.2016.11.002
    [47]
    Mari X, Rassoulzadegan F, Brussaard C P D, et al. 2005. Dynamics of Transparent Exopolymeric Particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae, 4(5): 895–914. doi: 10.1016/j.hal.2004.12.014
    [48]
    Mari X, Torréton J P, Trinh C B T, et al. 2012. Aggregation dynamics along a salinity gradient in the Bach Dang estuary, North Vietnam. Estuarine, Coastal and Shelf Science, 96: 151–158. doi: 10.1016/j.ecss.2011.10.028
    [49]
    Martin P, Lampitt R S, Perry M J, et al. 2011. Export and mesopelagic particle flux during a North Atlantic spring diatom bloom. Deep Sea Research Part I: Oceanographic Research Papers, 58(4): 338–349. doi: 10.1016/j.dsr.2011.01.006
    [50]
    Mei Zhiping, Legendre L, Gratton Y, et al. 2003. Phytoplankton production in the North Water Polynya: size-fractions and carbon fluxes, April to July 1998. Marine Ecology Progress Series, 256: 13–27. doi: 10.3354/meps256013
    [51]
    Menden-Deuer S, Lessard E J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45(3): 569–579. doi: 10.4319/lo.2000.45.3.0569
    [52]
    Obernosterer I, Herndl G J. 1995. Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N: P ratio. Marine Ecology Progress Series, 116: 247–257. doi: 10.3354/meps116247
    [53]
    Ortega-Retuerta E, Mazuecos I P, Reche I, et al. 2019. Transparent Exopolymer Particle (TEP) distribution and in situ prokaryotic generation across the deep Mediterranean Sea and nearby North East Atlantic Ocean. Progress in Oceanography, 173: 180–191. doi: 10.1016/j.pocean.2019.03.002
    [54]
    Ortega-Retuerta E, Reche I, Pulido-Villena E, et al. 2009. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. Marine Chemistry, 115: 59–65. doi: 10.1016/j.marchem.2009.06.004
    [55]
    Ortega-Retuerta E, Sala M M, Borrull E, et al. 2017. Horizontal and vertical distributions of Transparent Exopolymer Particles (TEP) in the NW Mediterranean Sea are linked to Chlorophyll a and O2 variability. Frontiers in Microbiology, 7: 2159
    [56]
    Parinos C, Gogou A, Krasakopoulou E, et al. 2017. Transparent Exopolymer Particles (TEP) in the NE Aegean Sea frontal area: seasonal dynamics under the influence of Black Sea water. Continental Shelf Research, 149: 112–123. doi: 10.1016/j.csr.2017.03.012
    [57]
    Passow U, Alldredge A L. 1994. Distribution, size and bacterial colonization of Transparent Exopolymer Particles (TEP) in the ocean. Marine Ecology Progress Series, 113: 185–198. doi: 10.3354/meps113185
    [58]
    Passow U, Alldredge A L. 1995. A dye-binding assay for the spectrophotometric measurement of Transparent Exopolymer Particles (TEP). Limnology and Oceanography, 40(7): 1326–1335. doi: 10.4319/lo.1995.40.7.1326
    [59]
    Passow U, Shipe R F, Murray A, et al. 2001. The origin of Transparent Exopolymer Particles (TEP) and their role in the sedimentation of particulate matter. Continental Shelf Research, 21(4): 327–346. doi: 10.1016/S0278-4343(00)00101-1
    [60]
    Passow U. 2002a. Transparent Exopolymer Particles (TEP) in aquatic environments. Progress in Oceanography, 55(3–4): 287–333. doi: 10.1016/S0079-6611(02)00138-6
    [61]
    Passow U. 2002b. Production of Transparent Exopolymer Particles (TEP) by phyto- and bacterioplankton. Marine Ecology Progress Series, 236: 1–12. doi: 10.3354/meps236001
    [62]
    Pedrotti M L, Peters F, Beauvais S, et al. 2010. Effects of nutrients and turbulence on the production of transparent exopolymer particles: a mesocosm study. Marine Ecology Progress Series, 419: 57–69. doi: 10.3354/meps08840
    [63]
    Penna A, Berluti S, Penna N, et al. 1999. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from the Adriatic Sea. Journal of Plankton Research, 21(9): 1681–1690. doi: 10.1093/plankt/21.9.1681
    [64]
    Prieto L, Navarro G, Cózar A, et al. 2006. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep Sea Research Part II: Topical Studies in Oceanography, 53(11–13): 1314–1328. doi: 10.1016/j.dsr2.2006.03.009
    [65]
    Prieto L, Ruiz J, Echevarría F, et al. 2002. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep Sea Research Part I: Oceanographic Research Papers, 49(7): 1233–1253. doi: 10.1016/S0967-0637(02)00024-9
    [66]
    Qiu Yong, Laws E A, Wang Lei, et al. 2018. The potential contributions of phytoplankton cells and zooplankton fecal pellets to POC export fluxes during a spring bloom in the East China Sea. Continental Shelf Research, 167: 32–45. doi: 10.1016/j.csr.2018.08.001
    [67]
    Ramaiah N, Furuya K. 2002. Seasonal variations in phytoplankton composition and transparent exopolymer particles in a eutrophicated coastal environment. Aquatic Microbial Ecology, 30(1): 69–82
    [68]
    Ramaiah N, Takeda S, Furuya K, et al. 2005. Effect of iron enrichment on the dynamics of transparent exopolymer particles in the western subarctic Pacific. Progress in Oceanography, 64(2–4): 253–261. doi: 10.1016/j.pocean.2005.02.012
    [69]
    Ramaiah N, Yoshikawa T, Furuya K. 2001. Temporal variations in Transparent Exopolymer Particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan. Marine Ecology Progress Series, 212: 79–88. doi: 10.3354/meps212079
    [70]
    Reigstad M, Wassmann P. 2007. Does Phaeocystis spp. contribute significantly to vertical export of organic carbon?. Biogeochemistry, 83(1–3): 217–234
    [71]
    Rochelle-Newall E J, Mari X, Pringault O. 2010. Sticking properties of Transparent Exopolymeric Particles (TEP) during aging and biodegradation. Journal of Plankton Research, 32(10): 1433–1442. doi: 10.1093/plankt/fbq060
    [72]
    Simon M, Grossart H P, Schweitzer B, et al. 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28(2): 175–211
    [73]
    Stoderegger K E, Herndl G J. 1999. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Marine Ecology Progress Series, 189: 9–16. doi: 10.3354/meps189009
    [74]
    Sugimoto K, Fukuda H, Baki M A, et al. 2007. Bacterial contributions to formation of Transparent Exopolymer Particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquatic Microbial Ecology, 46(1): 31–41
    [75]
    Sun Jun, Liu Dongyan. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11): 1331–1346. doi: 10.1093/plankt/fbg096
    [76]
    Sun Cuici, Wang Youshao, Li Q P, et al. 2012. Distribution characteristics of transparent exopolymer particles in the Pearl River estuary, China. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N17
    [77]
    Sun Cuici, Wang Youshao, Wu Meilin, et al. 2010. Distribution of transparent exopolymer particles in the Pearl River Estuary in summer. Journal of Tropical Oceanography (in Chinese), 29(5): 81–87
    [78]
    Tang Danling, Di Baoping, Wei Guifeng, et al. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568: 245–253. doi: 10.1007/s10750-006-0108-1
    [79]
    Turner J T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27(1): 57–102
    [80]
    Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progress in Oceanography, 130: 205–248. doi: 10.1016/j.pocean.2014.08.005
    [81]
    Utermöhl H. 1958–1996. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. SIL Communications, 9(1): 1–38
    [82]
    Waite A M, Gustafsson Ö, Lindahl O, et al. 2005. Linking ecosystem dynamics and biogeochemistry: sinking fractionation of organic carbon in a Swedish fjord. Limnology and Oceanography, 50(2): 658–671. doi: 10.4319/lo.2005.50.2.0658
    [83]
    Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8): 1985–1992. doi: 10.4319/lo.1994.39.8.1985
    [84]
    Wetz M S, Robbins M C, Paerl H W. 2009. Transparent Exopolymer Particles (TEP) in a river-dominated estuary: spatial-temporal distributions and an assessment of controls upon TEP formation. Estuaries and Coasts, 32(3): 447–455. doi: 10.1007/s12237-009-9143-2
    [85]
    Xiao Wupeng, Liu Xin, Irwin A J, et al. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128: 206–216. doi: 10.1016/j.watres.2017.10.051
    [86]
    Zamanillo M, Ortega-Retuerta E, Nunes S, et al. 2019. Distribution of Transparent Exopolymer Particles (TEP) in distinct regions of the Southern Ocean. Science of the Total Environment, 691: 736–748. doi: 10.1016/j.scitotenv.2019.06.524
    [87]
    Zhai Weidong, Dai Minhan. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) estuary, East China Sea. Marine Chemistry, 117(1–4): 2–10. doi: 10.1016/j.marchem.2009.02.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (350) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return